
The tool of thought for expert programming

Dyalog™ forWindows

Release Notes

Version: 14.0

Dyalog Limited
email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2015 by Dyalog Limited

All rights reserved.

Version: 14.0

Revision: 20150302

Nopart of this publicationmay be reproduced in any form by any means without the prior written per-
mission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publicationwithout notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

iii

Contents

Chapter 1: Introduction 1
Key Features 1
System Requirements 5
Interoperability 6
Announcements 11
Performance Improvements 14
Bug Fixes 16

Chapter 2:NewLanguage Features 19
Function Trains 19
Key Operator 20
Index Of 21
Mix 22
Mix With Axis 23
Rationalisation ofMonadic Operators 24
Right Operand Currying 25
Random Link Extension 26
New Symbols in Classic Edition 28

Chapter 3:Component File Improvements 29
File Read 29
Compressed Components 30
File Create and Variant 31
File Check and Variant 32

Chapter 4:Miscellaneous 35
IDE Enhancements 35
Window Captions 42
Specifying Overloads and Casts for .Net 44
APL Application as a Service 47
Causeway Tools 52

Chapter 5: LanguageReferenceChanges 55
Tally 57
Index Of 57
Mix 60
Key 65

iv

Rank 69
Function Trains 72
File Properties 76
File Create 80
File Read Components 82
File Check and Repair 83
XML Convert 86
Roll 100

Chapter 6: I-BeamReferenceChanges 101
Inverted Table Index Of 103
Unsqueezed Type 105
Compress Vector of Short Integers 106
Serialise/Deserialise Array 108
Number of Threads 109
Update Function Time Stamp 110
Specify Workspace Available 111
Data Binding 112
Flush Session Caption 118
Close All Windows 119
Set Workspace Save Options 120
Expose Root Properties 121
Close All Windows 122
SessionPrint 123

Chapter 7:ObjectReferenceChanges 125

Chapter 8:WindowsPresentationFoundation 127
Temperature Converter Tutorial 128
Data Binding 147
Syncfusion Libraries 169

Chapter 9:UNIX Specific Features 175
Summary 175

Index 177

Chapter 1: Introduction 1

Chapter 1:

Introduction

Key Features
Dyalog APL Version 14.0 provides the following new features, enhancements and
changes:

Performance Improvements
Version 14.0 includes a considerable amount of research and development work
designed to substantially improve speed of execution. See Performance Improve-
ments on page 14.

Language Enhancements
New Language Features

l New terminology is introduced in Version 14.0 to describe sub-arrays of an
array as cells. This terminology is used to describe the workings of the new
Rank (⍤) and Key (⌸) operators, the function Tally (≢), and the extension to
dyadic Iota (⍳). See Cells and Sub-arrays on page 55.

l New Rank operator ⍤. See Rank on page 69
l New Key operator ⌸. See Key Operator on page 20.
l New function Tally ≢. See Tally on page 57
l Function Trains. See Function Trains on page 19.

Chapter 1: Introduction 2

New I-Beam Features
l A function is provided to support WPF data binding. See Data Binding on

page 112.
l A function is provided to perform fast index-of operations on inverted table

structures. See Inverted Table Index Of on page 103.
l A function is provided to obtain the current type of an array without it

being squeezed first. See Unsqueezed Type on page 105.
l A function is provided to compress and decompress vectors of short

integers. See Compress Vector of Short Integers on page 106.
l A function is provided to serialise and de-serialise an array. See Seri-
alise/Deserialise Array on page 108.

l A function is provided to update the function timestamp and user. See
Update Function Time Stamp on page 110.

l A function is provided to affect fine control over memory allocated to the
workspace. See Specify Workspace Available on page 111.

l A function is provided to flush the Session caption. See Flush Session Cap-
tion on page 118.

l A function is provided to close all windows. See Close All Windows on
page 122.

l A function is provided to set workspace save options. See Set Workspace
Save Options on page 120.

Extensions
l Dyadic ⍳ has been extended to matrices and higher-rank arrays. See Index
Of on page 21.

l Mix (↑⍵ if ⎕ml<2; ⊃⍵ if ⎕ml≥2) has been extended. See Mix on page 22.
l The APL2-compatible version of Mix (⊃⍵ when ⎕ml≥2) has been extended.

See Mix With Axis on page 23.
l Monadic operators may now be named and assigned. See Rationalisation of
Monadic Operators on page 24.

l Dyadic operators may now be bound with their right arguments to form
monadic operators. See Right Operand Currying on page 25.

l Options for ⎕XML may now be specified using the Variant operator ⍠. This
becomes the recommended approach, although the use of the optional left
argument will be retained for backwards compatibility. See XML Convert
on page 86.

l Roll can now generate random numbers in the range 0 - 1. See Roll on page
100.

l Table (monadic ⍪) may now be used in selective assignment.
l ⎕RL has been extended to initialise the random number generator with a ran-

dom seed. See Random Link Extension on page 26.

Chapter 1: Introduction 3

Component File System Improvements
l Data in component files may now be compressed to improve performance

when file access is slow. See Compressed Components on page 30.
l File properties may now be set when the file is created using a function

derived from ⎕FCREATE and the Variant operator ⍠. See File Create and
Variant on page 31.

l ⎕FREAD can now read multiple components. See File Read on page 29.
l Options for ⎕FCHK may now be specified using the Variant operator (recom-

mended) instead of using its optional left argument. See File Check and
Variant on page 32.

IDE Enhancements
l The system now generates a SessionPrint event when a value is about to be

displayed in the Session. This event is used by the two new user commands
described below. For further details, see SessionPrint on page 123.

l]boxing user command optionally causes arrays displayed in the Session
to be drawn in boxes to display their structure. See]boxing on page 35.

l]rows user command controls how rows in multi-row output to the Session
are displayed. See]rows on page 36.

l New Editor feature to align comments. See Aligning Comments on page 36.
l New Editor toolbar buttons. See New Editor Toolbar Buttons on page 37.
l New Editor options Allow search to wrap and Skip blank lines when
tracing. See New Editor Options on page 37.

l New Tracer extension to allow the Editor to be called when the cursor is on
any whitespace.

l New Editor option Remember previous window position (Classic Mode
only)

l New Tracer option Limit tracer display to function in script.
l Facility to customise the window captions for the IDE. See Window Cap-
tions on page 42.

l New function Set Workspace Save Options determines whether or not the
system will reset Trace, Stop and Monitor settings whenever a workspace is
saved. See Set Workspace Save Options on page 120.

l Value tips can now be used to investigate the syntax of external functions.

Chapter 1: Introduction 4

.NET Interface
l Under a licensing agreement with Syncfusion, Dyalog includes the Syn-

cfusion library of WPF controls. These may be used by Dyalog APL users to
develop applications, and may be distributed with Dyalog APL run-time
applications.The Syncfusion libraries comprise a set of .NET assemblies
which are supplied in the Syncfusion/4.5 sub-directory of the main Dyalog
APL installation directory (for example: c:\Program Files\Dyalog\Dyalog
APL-64 14.0 Unicode\Syncfusion\4.5.. See Syncfusion Libraries on page
169.

l Version 14.0 includes support for Data Binding. See Example 1 on page
147.

l The .NET interface includes a new DLL. The
dyalogdata4.5.dll provides advanced support for Data Binding and
Syncfusion. In particular it provides the INotifyCollectionChanged
interface which is required to support data binding of collections and lists.
This DLL requires .NET Version 4.5 and is not used unless .NET 4.5 is
enabled.

l It is now possible to specify overloads and casts for calling .NET functions.

APL Applications as Windows Services
Features to allow the implementation of APL applications as Windows Services are
now integrated into the Dyalog system.

Chapter 1: Introduction 5

System Requirements
Microsoft Windows
Dyalog APL Version 14.0 supports versions ofWindows fromMicrosoft Windows
XP up to and including Microsoft Windows 8.1 and Microsoft Windows Server
2012. Dyalog APL Version 14.0 will not run on earlier versions.

Microsoft .Net Interface
Dyalog APL Version 14.0 .NET Interface requires Version 2.x or greater of the
Microsoft .NET Framework. It does not operate with .NET Version 1.0.

ForWindows Presentation Foundation (WPF) and basic Data Binding, Version 14.0
requires .NET Version 4.0.

For full Data Binding support (including support for the
INotifyCollectionChanged interface1), and Syncfusion, Version 14.0
requires .NET Version 4.5.

AIX and Linux
For AIX, Version 14.0 requires AIX 6.1 or higher, and a POWER5 chip or higher.

Version 14.0 is built on RedHat 5, and runs on all recent distributions, including
Ubuntu 12.04 and openSUSE 12.3. Contact Dyalog for information about other plat-
forms.

1This interface is used by Dyalog to notify a data consumer when the contents of a variable, that is
data bound as a list of items, changes.

Chapter 1: Introduction 6

Interoperability
Introduction
Workspaces and component files are stored on disk in a binary format (illegible to
text editors). This format differs between machine architectures and among versions
of Dyalog. For example a file component written by a PC may well have an internal
format that is different from one written by a UNIX machine. Similarly, a workspace
saved fromDyalog Version 14.0 will differ internally from one saved by a previous
version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able
to interoperate by sharing workspaces and component files. FromVersion 11.0, com-
ponent files and workspaces can generally be shared between Dyalog interpreters run-
ning on different platforms. However, this is not always possible, for example:

l Component files created by Version 10.1 can often not be shared across plat-
forms, even when used by later versions.

l Small-span (32-bit) component files become read-only when opened on a
different architecture from that on which they were created.

Note however that the system function ⎕FCOPY can be used to make a logically
identical copy of an old file, which is fully inter-operable.

The following sections describe other limitations in inter-operability:

Code
Code which is saved in workspaces, or embedded within ⎕ORs stored in component
files, can generally only be read by the version which saved them and later versions
of the interpreter. In the case of workspaces, a load (or copy) into an older version
would fail with the message:

this WS requires a later version of the interpreter.

Every time a ⎕OR object is read by a Version later than that which created it, time
may be spent in converting the internal representation into the latest form. Dyalog
recommends that ⎕OR should not be used as a mechanism for sharing code or objects
between different versions of APL

Chapter 1: Introduction 7

"Ordinary" Arrays
With the exception of the Unicode restrictions described in the following para-
graphs, Dyalog APL provides inter-operability for arrays which only contain (nested)
character and numeric data. Such arrays can be stored in component files - or trans-
mitted using TCPSocket objects and Conga connections, and shared between all
versions and across all platforms.

As mentioned in the introduction, full cross-platform interoperability of component
files is only available for large-span component files (see the following section), and
for small-span component files created by Version 11.0 or later.

32 vs. 64-bit Component Files
Large-span (64-bit-addressing) component files are inaccessible to versions of the
interpreter that pre-dated their introduction (versions earlier than 10.1).

From version 14.0 onwards it is no longer possible to create small-span (32-bit) files;
Version 14.0 is still able to read and write to small span files. Setting the second item
of the right argument of ⎕FCREATE will generate a DOMAIN ERROR.

Note that small-span (32-bit-addressing) component files cannot contain Unicode
data. Unicode editions of Dyalog APL can only write character data which would be
readable by a Classic edition (consisting of elements of ⎕AV).

External Variables
External variables are implemented as small-span (32-bit-addressing) component
files, and subject to the same restrictions as these files. External variables are unlikely
to be developed further; Dyalog recommends that applications which use them
should switch to using mapped files or traditional component files. Please contact
Dyalog if you need further advice on this topic.

32 vs. 64-bit Interpreters
FromDyalog APL Version 11.0 onwards, there are two separate versions of programs
for 32-bit and 64-bit machine architectures (the 32-bit versions will also run on 64-
bit machines running 64-bit operating systems). There is complete inter-operability
between 32- and 64-bit interpreters, except that 32-bit interpreters are unable to work
with arrays or workspaces greater than 2GB in size.

Chapter 1: Introduction 8

Unicode vs. Classic Editions
FromVersion 12.0 onwards, a Unicode edition is available, which is able to work
with the entire Unicode character set. Classic editions (a term which includes ver-
sions prior to 12.0) are limited to the 256 characters defined in the atomic vector,
⎕AV).

Component files have a Unicode property. When this is enabled, all characters will
be written as Unicode data to the file. The Unicode property is always off for small-
span (32-bit addressing) files, which may not contain Unicode data. For large-span
(64-bit addressing) component files, the Unicode property is set on by Unicode Edi-
tions and off by Classic Editions, by default. The Unicode property can subsequently
be toggled on and off using ⎕FPROPS.

When a Unicode edition writes to a component file which may not contain Unicode
data, character data is mapped using ⎕AVU, and can therefore be read without prob-
lems by Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-Unicode
component (that is either a 32-bit file, or a 64-bit file when the Unicode property is
currently off) if the data being written contains characters which are not in ⎕AVU.

Likewise, a Classic edition (Version 12.0 or later) will issue a TRANSLATION
ERROR if it attempts to read a component containing Unicode data not in ⎕AVU from
a component file. Version 11.0 cannot read components containing Unicode data
and issues a NONCE ERROR.

A TRANSLATION ERROR will also be issued when a Classic edition)LOADs or)
COPYs a workspace containing Unicode data which cannot be mapped to ⎕AV using
the ⎕AVU in the recipient workspace.

TCPSocket objects have an APL property which corresponds to the Unicode prop-
erty of a file, if this is set to Classic (the default) the data in the socket will be
restricted to ⎕AV, if Unicode it will contain Unicode character data. As a result,
TRANSLATION ERRORs can occur on transmission or reception in the same way as
when updating or reading a file component.

Chapter 1: Introduction 9

AVU changes
The implementation of the function Right in Version 13.0 led to the discovery that
⎕AVU incorrectly defined ⎕AV[59+⎕IO] as ¤ (⎕UCS 164) rather than ⊢ (Right
Tack, ⎕UCS 8866). This error has been corrected in the default ⎕AVU and in work-
space AVU.dws. If you are operating in a mixed Unicode/Classic environment, this
error will have caused earlier Classic editions to map ⎕AV[59+⎕IO] to the wrong
Unicode character (¤). This may cause TRANSLATION ERRORs when a Version
13.0 Classic system attempts to read the data, as it will not be able to represent ¤ in
the Atomic Vector.

DECFs and Complex numbers
Version 13.0 introduced two new data types; DECFs and Complex numbers.
Attempts to read components of these types in earlier interpreters will result in a
DOMAIN ERROR.

Very large array components
The maximum size (in bytes) of a component written by Version 12.1 and prior is
2GB. This is the size of the component as held on disk which may be different than
the size reported by ⎕SIZE. In Version 13.0 the maximum size of a component writ-
ten by a 64-bit interpreter is 4GB. FromVersion 13.2 onwards, the limit on the size of
arrays or components is so large that for most practical purposes, there is effectively
no limit.

An attempt to read a component greater than 2GB in 32-bit interpreters will result in
a WS FULL. An attempt to read such a component in 64-bit Versions 12.0 and 12.1
patched after 1st April 2011 will result in a NONCE ERROR; earlier patches generate
a FILE COMPONENT DAMAGED error.

File Journaling
Version 12.0 introduced File Journaling (level 1), and 12.1 added journaling levels 2
and 3 and checksumming. Versions earlier than 12.0 cannot tie files which have any
form of journaling or checksumming enabled. Version 12.0 cannot tie files with
journaling levels greater than 1, or checksumming enabled. Attempting to tie such
files will result in a FILE NAME ERROR. Files can be shared with earlier versions
by using ⎕FPROPS to amend the journaling and checksumming levels.

Chapter 1: Introduction 10

File Component Compression
Version 14.0 introduced File Component Compression; earlier versions will be able
to perform all file operation on such files with the exception of being able to
⎕FREAD any compressed component. In particular, it is possible for any earlier ver-
sion to ⎕FREPLACE a compressed component with a non-compressed one.

Attempting to read a compressed component using earlier versions of Dyalog APL
will generate an error:

l All 13.2 and 13.1.14842 and later:
DOMAIN ERROR: Array is from a later version of APL

l 13.1 before revision 14842:
FILE COMPONENT DAMAGED: Incoming array is invalid

l 13.0 and 12.1 after revision 11154:
DOMAIN ERROR

l 13.0 and 12.1 before revision 11154:
FILE COMPONENT DAMAGED

TCPSockets
TCPSockets used to communicate between differing versions of Dyalog APL are sub-
ject to similar limitations to those described above for component files. In particular
TCPSockets with 'Style' 'APL' will only be able to pass arrays that are sup-
ported by both versions.

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same architecture.
In other words, the APmust share the same word-width and byte-ordering as its inter-
preter process.

Session Files
Session (.dse) files may only be used on the platform on which they were created and
saved.

Chapter 1: Introduction 11

Announcements
Withdrawal of Support for Version 12.1 and 13.0
The supported Versions of Dyalog APL are now Version 14.0, Version 13.2 and Ver-
sion 13.1. Versions 13.0, 12.1 and earlier are no longer supported.

Migration Level (⎕ML)
In Version 14.0, the default value of ⎕ML in a CLEAR WS has been changed from 0
to 1. This means that monadic ∊ is interpreted as Enlist and not as Type. Note that the
value of ⎕ML in saved workspaces is unaffected by this change. Note too that this
default value may be overridden using the default_ml parameter. See User Guide for
details.

Deprecation of small-span component files
Since Version 10.1, Dyalog APL has supported large-span (64-bit) component files,
and since Version 12.0 ⎕FCREATE has created these by default.

FromVersion 14.0 onwards it is not possible to create small-span component files,
although you may continue to read and write components on existing small-span
component files.

Dyalog recommends that you convert any existing small-span component files to
large-span files using ⎕FCOPY. ⎕FCOPY will create a large-span copy even if the file
being copied is small-span. You may use the user command]Files.tolarge to
locate existing small-span files and convert them to the large-span architecture.

Dyalog APL now ignores the -F32 argument, as well as the APL_FCREATE_
PROPS_S environment variable.

Auxiliary Processors
In Version 14.0, the Dyalog-supplied Auxiliary Processor qfsck has been removed
from the product. Anybody still using fsck is advised to switch to ⎕FCHK instead.

The auxiliary processors strand and xutils are still included with Version 14.0,
but the intention remains to remove them as soon as possible.

The interfaces for user-written Auxiliary Processors will continue to be supported.

Chapter 1: Introduction 12

Random Number Generator
In Versions 13.1 and 13.2 the default random number generator in a CLEAR WS was
0 (Lehmer linear congruential).

In Version 14.0 the default is 1 (Mersenne Twister).

Note: the change to the default will only impact applications if they are rebuilt from
a clear workspace; saved workspaces will be unaffected.

Recommendation concerning Component Files
Dyalog strongly recommends that Component files should be protected by Journ-
alling and have Checksum enabled. See File Properties on page 76.

FontObj Property
The FontObj property should no longer be used directly to specify the properties of a
font. It should only be used to specify the Font object to be used, which in turn spe-
cifies the characteristics of a font.

Carriage Return Change (UNIX only)
Previously, the expression ⎕UCS ⎕AV[3+⎕IO] returned 133 (NEL) in Unicode
UNIX versions. In all other versions it returned 13 (CR).

FromVersion 14.0, all versions of Dyalog APL return 13.

Note: the change to the default will only impact applications if they are rebuilt from
a clear workspace; saved workspaces will be unaffected.

.NET Support
Support for Microsoft .Net Version 2 will cease in Dyalog APL Version 15.0.

New Method
Currently Dyalog APL adds a method named New to all .Net objects which do not
have such a member. This allows the APL programmer to create an instance of an
object (such as in this example a DateTime object) by executing the statements:

⎕USING←'System'
dt←DateTime.New 1949 4 30

Dyalog intends to remove this feature from future versions of Dyalog APL. This
mechanism was made redundant by the introduction of ⎕NEW, and the following syn-
tax should be adopted:

dt←⎕NEW DateTime (1949 4 30)

Chapter 1: Introduction 13

UpperCase Property
Dyalog intends to remove the Uppercase Property as a property of Root in future ver-
sions of Dyalog APL. Since Version 12.0 its value has had no effect.

Dyalog-added .New method
In Version 14.0 and prior the interpreter would add a .New method to any
.NET object which did not have one of its own. This was introduced when NEW
was not part of the language. FromVersion 14.1 onwards the interperter will no
longer add a .New method.

DWSIN/DWSOUT
The workspaces DWSIN and DWSOUT have been removed from version 14.0;]in
and]out should be used instead. More details can be found in the Dyalog APL
Workspace Transfer Guide.

DFNS
The dfns.dws workspace is now supplied in the ws sub-directory and not in the
samples sub-directory as before.

TCPIP
The sample workspace samples\tcpip.dws is no longer supplied and is no
longer supported.

aplserve
The sample web server which was previously provided in the aplserve sub-dir-
ectory is no longer supplied nor supported.

Chapter 1: Introduction 14

Performance Improvements
Dyalog APL Version 14.0 provides a large number of performance improvements,
including the following:

New Idioms
The following new idioms are recognised:

Expression Description

⌊0.5+NA Round to nearest integer

Inverted Table Index-of
An inverted table is a data structure that is commonly used in APL applications to
handle relational data. The (8⌶) derived function provides a fast and efficient means
to perform a table look-up of one inverted table in another. See Inverted Table Index
Of on page 103.

Component File Operations
The performance of reading and writing APL components has been improved by bet-
ter use of buffering and other changes.

Boolean Operations which are faster in 14.0 than in 13.2
l All structural functions such as ↑ ↓ ⍴ [;] ⌷ , ⍪ ⌽ ⊖ on Boolean

arrays
l BV/⍳⍴BV
l BV/⍳NS
l BV⍳1 and BV⍳0
l BV1/BV2 and BV1⌿BV2 and BV/[k]BV2
l +\[k]BV
l BA1=BA2

Chapter 1: Introduction 15

Other operations which are faster in 14.0 than in 13.2
l Simple indexing including bracket indexing, bracket indexed assignment,

and squad indexing
l ↑[⎕IO-0.5] PV
l NV1[NV2]+←1 when NV2 is not in strictly ascending numerical order
l associative arithmetic scans +\[k]NA and ×\[k]NA and ⌊\[k]NA and ⌈\

[k]NA
l ⌊NA and⌈NA when ⎕CT is 0

Where:

BV Boolean vector
BA Boolean array
PV nested vector
NV numeric vector
NA numeric array

Chapter 1: Introduction 16

Bug Fixes
A number of bug fixes implemented in Version 14.0 may change the way that exist-
ing code operates and are therefore documented in this section.

Matrix Inverse with scalar argument
If the argument to monadic ⌹ is scalar, the result should be scalar. In previous ver-
sions the result was a 1-element vector. This correction may change the way that
existing code works, especially as the bug has been there since the earliest imple-
mentation of Dyalog.

⌹2
0.5

⊃⍴ ⌹2 ⍝ Version 13.1 and earlier
1

⊃⍴ ⌹2 ⍝ Version 14.0
0

Change Data Type
Previously, the Unicode Edition of Dyalog APL accepted a left argument of 82 (8-
bits character) treating it as if it were 80. It now signals an error.

Version 13.2
82 ⎕DR 65

A

Version 14.0
82 ⎕DR 65

DOMAIN ERROR: Invalid conversion code
82 ⎕DR 65

∧

Threads and Error Trapping
If a function sets a global (catch all) trap, then spawns a thread with the intention
that the trap should be in effect for the new thread, and subsequently introduces a
new local :Trap or dfn error guard, it was possible that an error in the spawned
thread would be caught by the second trap and not the first. This has now been
resolved.

Chapter 1: Introduction 17

.Net Object Property Assignment
In version 14.0 the interpreter will no longer accept a one element vector as the value
of a .Net object Property that is expected to be a single numeric value; only a simple
scalar value will be accepted.

In 13.2 and prior, the interpreter would (incorrectly) pass a scalar rather than a single
element vector as the value when assigning to a .Net Property that expected a vector,
which lead to unexpected errors. In 14.0 the interpreter (correctly) insists that a vector
Property is passed a vector and a scalar Property is passed a scalar value.

Example
⎕using←''
s←⎕new System.IO.MemoryStream

s.Capacity
0

s.Capacity←100

s.Capacity←,100
DOMAIN ERROR

s.Capacity←,100
∧

This last assignment will succeed in Version 13.2 and prior.

Chapter 1: Introduction 18

Chapter 2: New Language Features 19

Chapter 2:

New Language Features

Function Trains
A Train is a sequence of 2 or 3 items in an expression which bind together to form a
function. Each item in a train may be an array or a function but the right-most item
must be a function.

Note that the right-most item of a function train (which is by definition a function)
must be isolated from anything to its right, otherwise it will be bound to that rather
than to the items to its left. This is done using parentheses.

For example, the following expression comprises a function train -,÷ that is sep-
arated from its argument 2 by parentheses:

(-,÷) 2
¯2 0.5

and means:

1. Calculate the reciprocal of 2
2. Calculate the negation of 2
3. Catenate these 2 results together

Whereas, without the parentheses to identify the function train, the expression means
(as it did before):

1. Calculate the reciprocal of 2
2. Ravel the result of step 1
3. Negate the result of step 2

-,÷ 2
¯0.5

For further information, see Function Trains on page 72.

Chapter 2: New Language Features 20

Key Operator
In the expression Xf⌸Y the Key operator ⌸1 applies the function f to the major cells
of array Y grouped by a set of keys which are specified by the major cells of array X.
For further details, see Key on page 65.

Consider a simple example where FRUIT and QTY are both vectors that represent
sales transactions of fruit. Note that the major cells of a vector are its items.

FRUIT←'oranges' 'pears' 'apples' 'pears' 'oranges'
QTY←12 4 5 10 7
FRUIT,[1.5]QTY

oranges 12
pears 4
apples 5
pears 10
oranges 7

FRUIT {⍺,+/⍵} ⌸ QTY
oranges 19
pears 14
apples 5

In the expression FRUIT{⍺,+/⍵}⌸QTY, ⌸ first calculates the set of unique elements
of FRUIT. It then groups together the elements of QTY which relate to the same
unique element of FRUIT. In this case, QTY[1 5] relates to 'oranges', QTY[2
4] relates to 'pears' and QTY[3] relates to 'apples'.

It then pairs each unique FRUIT with each corresponding subset of QTY and applies
the function {⍺,+/⍵} between each pair, with each unique FRUIT as its left argu-
ment and each subset of QTY as its right argument. Specifically, it applies function
{⍺,+/⍵} three times with arguments as follows:

(⊂'oranges') {⍺,+/⍵} (12 7)
(⊂'pears') {⍺,+/⍵} (4 10)
(⊂'apples') {⍺,+/⍵} (,5)

1The symbol ⌸ is not available in Classic Edition, and the Key operator is instead represented by
⎕U2338

Chapter 2: New Language Features 21

Index Of
Dyadic ⍳ has been extended to matrices and higher-rank arrays, so that sub-arrays spe-
cified by the right argument may be located in the left argument.

Specifically, this applies to major cells of the left argument x, where a major cell is a
sub-array on the leading dimension of x with shape 1↓⍴x. The major cells of a mat-
rix are its rows.

Until now, the idiom {(↓⍺)⍳↓⍵} was the best way to look up rows of one matrix in
another (often called the matiota idiom). This extension to dyadic ⍳ provides a
more concise solution that is equally as fast, so renders the idiom redundant.

(3 4⍴⍳6) {(↓⍺)⍳↓⍵} 10 4⍴⍳6
1 2 3 1 2 3 1 2 3 1

(3 4⍴⍳6) ⍳ 10 4⍴⍳6
1 2 3 1 2 3 1 2 3 1

For further information, see Index Of on page 57

Chapter 2: New Language Features 22

Mix
Mix (↑⍵ if ⎕ml<2; ⊃⍵ if ⎕ml≥2) has been extended.

Previously, if any items in the argument (with the exception of scalars) had different
rank, the function would signal a RANK ERROR. Now, it automatically extends the
rank of non-scalar items in the argument to that of the largest rank by padding their
shape with leading ones.

Version 13.2
↑(2 2)(2 3⍴3)

RANK ERROR
↑(2 2)(2 3⍴3)

∧

Version 14.0
↑(2 2)(2 3⍴3)

2 2 0
0 0 0

3 3 3
3 3 3

In this case, the rank of the first item, the vector (2 2) is extended to that of the
second (a matrix) by prefixing its shape with 1; so it becomes (1 2⍴2 2). The res-
ult then obtains from ↑(1 2⍴2 2)(2 3⍴3).

Note that the extended mix is also exploited in the implementation of the new Rank
and Key operators.

Chapter 2: New Language Features 23

Mix With Axis
The APL2-compatible version ofMix (⊃⍵ when ⎕ml≥2) has been extended.

Previously, in the expression ⊃[K]Y, the axis specifier K was a scalar integer which
set the position of the axes of the items of Y in the shape of the result.

Example
⊢Y←5 4⍴(⍳20)×⊂3 2⍴1

┌─────┬─────┬─────┬─────┐
│1 1 │2 2 │3 3 │4 4 │
│1 1 │2 2 │3 3 │4 4 │
│1 1 │2 2 │3 3 │4 4 │
├─────┼─────┼─────┼─────┤
│5 5 │6 6 │7 7 │8 8 │
│5 5 │6 6 │7 7 │8 8 │
│5 5 │6 6 │7 7 │8 8 │
├─────┼─────┼─────┼─────┤
│9 9 │10 10│11 11│12 12│
│9 9 │10 10│11 11│12 12│
│9 9 │10 10│11 11│12 12│
├─────┼─────┼─────┼─────┤
│13 13│14 14│15 15│16 16│
│13 13│14 14│15 15│16 16│
│13 13│14 14│15 15│16 16│
├─────┼─────┼─────┼─────┤
│17 17│18 18│19 19│20 20│
│17 17│18 18│19 19│20 20│
│17 17│18 18│19 19│20 20│
└─────┴─────┴─────┴─────┘

Notice where the (3 2) appears in the following results:

⍴⊃[1]Y
3 2 5 4

⍴⊃[2]Y
5 3 2 4

⍴⊃[3]Y
5 4 3 2

In Version 14.0, a vector K allows the axes of the items of Y to be distributed in the
shape of the result, instead of being contiguous. Notice where the 3 and the 2 appear
in the following results:

⍴⊃[1 3]Y
3 5 2 4

⍴⊃[1 4]Y
3 5 4 2

⍴⊃[4 2]Y
5 2 4 3

Chapter 2: New Language Features 24

Rationalisation of Monadic Operators
Like primitive functions, monadic operators can be:

l named
l enclosed within parentheses
l displayed in the session

Examples
⎕ ← each ← (¨) ⍝ name and display

¨
shape←⍴
shape each (1 2) (3 4 5)

2 3

slash←/
+slash ⍳10

55
swap←⍨
3 -swap 4

1

Note that dyadic operators are not promoted to first-class and so may not in general
be named or displayed. A dyadic operator may however be bound with its right oper-
and to form a monadic operator, i.e. a first class citizen. See Right Operand Currying
on page 25.

Chapter 2: New Language Features 25

Right Operand Currying
A dyadic operator may be bound or curried with its right operand to form a monadic
operator:

Examples
⎕ ← inv ← ⍣¯1 ⍝ produces monadic inverse operator

⍣ ¯1
+\inv 1 2 3 ⍝ scan-inverse

1 1 1
lim ← ⍣≡ ⍝ power-limit

1 +∘÷lim 1 ⍝ Phi
1.61803

Note:
The following restrictions continue to apply to Version 14.0 but may be relaxed in a
later release:

l Dyadic operators are not promoted to first-class and so may not in general
be named or displayed

l Left operand currying is not supported

Examples
∘ ⍝ Dyadic operator not first-class

SYNTAX ERROR

⊂⍣ ⍝ No left-operand currying
SYNTAX ERROR

Chapter 2: New Language Features 26

Random Link Extension
Certain applications require a non-repeatable series of pseudo-random numbers, and
several programming techniques exist to meet this requirement (such as generating a
seed from the system clock) which are not always satisfactory. In Version 14.0, you
may have the system itself generate a random seed by assigning the value 0 to ⎕RL.

If ⎕RL is assigned the value 0, ⎕RL is initialised with a random seed generated by
the operating system. This provides the means to initiate a non-repeatable series of
pseudo-random numbers when using RNG0 or RNG1.

Summary
In the following tables, A is an integer that specifies the type of operation to be per-
formed.

I-Beam functionality removed fromVersion 14.0.

A Derived Function

685 UNIX only: core to aplcore

I-Beam functionality extended in Version 14.0.

A Derived Function

1111 Number of Threads/Virtual Processors

I-Beam functionality added to Version 14.0.

A Derived Function

8 Inverted Table Index-of

181 Unsqueezed Type

219 Compress/Decompress Vector of Short Integers

220 Serialise/Deserialise Array

1159 Update Function Time and User Stamp

2002 Specify Workspace Available

Chapter 2: New Language Features 27

A Derived Function

2015 Data Binding

2022 Flush Session Caption

2023 Close all Windows

2400 Set Workspace Save Options

2401 Expose Root Properties

Chapter 2: New Language Features 28

New Symbols in Classic Edition
The symbols for the 2 new operators introduced in Version 14.0, namely ⌸ (Key) and
⍤ (Rank), and the previously introduced symbol ⍠ (Variant) are not provided in Clas-
sic Edition.

If you create a function in a non-scripted namespace (including the root namespace)
containing these symbols in a Unicode Edition,)SAVE the workspace and then)
LOAD the workspace using Classic Edition, the symbols will be replaced by strings
in the form ⎕Unnnn as shown in the table below.

These strings may be entered and edited in the Classic Edition editor and will be re-
fixed as the corresponding operators. In Unicode Edition, only the correct symbols
may be used; the substitution strings will not be understood.

Symbol Substitution String (Classic Edition only)

⍠ ⎕U2360

⌸ ⎕U2338

⍤ ⎕U2364

Replacement of these symbols with their substitution strings and vice versa will only
occur when they appear in code in the body of functions which appear in non-scrip-
ted namespaces. Replacement will not happen when they appear in:

l comments in functions
l character constants in functions
l any scripted object (this includes functions defined in scripted objects)
l variables

When attempting to)LOAD or)COPY a workspace that does not meet the above cri-
teria into a Classic Edition, a TRANSLATION ERROR will be signalled. In 14.0 the
error message includes the character which has caused the operation to fail; bear in
mind that this is the first occurrence of the first character which will generate a
TRANSLATION ERROR; there may be more instances of this character, and there
may be other characters too.

Chapter 3: Component File Improvements 29

Chapter 3:

Component File Improvements

File Read
⎕FREAD has been enhanced to allow you to read several components at one time,
without the use of the Each (¨) operator. It differs from the equivalent operation
using Each in that it is faster and is an atomic operation that does not permit an inter-
vening file operation by a different user.

To effect this enhancement, the second element of the argument may now be a vector
of component numbers, rather than just a single component number as before.

Example
'temp'⎕FCREATE 1
(⍳10)⎕FAPPEND¨1
⎕FSIZE 1

1 11 2240 1.844674407E19

⎕FREAD 1 (⍳10)
1 2 3 4 5 6 7 8 9 10

Chapter 3: Component File Improvements 30

Compressed Components
In Version 14.0, you may now create compressed components. Components are com-
pressed using the LZ4 compressor which delivers a medium level of compression, but
is considered to be very fast compared to other algorithms.

Compression is intended to deliver a performance gain reading and writing large com-
ponents on fast computers with slow (e.g. network) file access. Conversely, on a slow
computer with fast file access compression may actually reduce read/write per-
formance. For this reason it is optional at the component level.

This feature is implemented by a new file property 'Z' which may be set using
⎕FPROPS, or by a function derived from ⎕FCREATE with the Variant operator ⍠.

The default for the 'Z' property is 0 which means no compression; 1 means com-
pression. When written, components are compressed or not according to the current
value of the 'Z' property. Changing this property does not change any components
already in the file.

A component file may therefore contain a mixture of normal and compressed com-
ponents. Note that only the data in file components are compressed, the file access
matrix and other header information is not compressed.

When read, compressed components are decompressed regardless of the value of the
'Z' property.

Compression is not supported for files in which both Journalling and Checksum are
disabled.

Attempting to read compressed components using earlier versions of Dyalog APL
will generate an error:

l All 13.2 and 13.1.14842 and later:
DOMAIN ERROR: Array is from a later version of APL

l 13.1 before revision 14842:
FILE COMPONENT DAMAGED: Incoming array is invalid

l 13.0 and 12.1 after revision 11154:
DOMAIN ERROR

l 13.0 and 12.1 before revision 11154:
FILE COMPONENT DAMAGED

Chapter 3: Component File Improvements 31

File Create and Variant
Previously, if you wanted to create a component file with non-default properties, it
was necessary to execute two steps, namely:

1. Create the file using ⎕FCREATE
2. Set the File Properties using ⎕FPROPS

Without changing the syntax of ⎕FCREATE it is now possible to achieve this in one
step because in Version 14.0 ⎕FCREATE supports the variant operator ⍠ and the fol-
lowing options:

l 'J' - journaling level; a numeric value
l 'C' - checksumming level; 0 or 1
l 'Z' - compression; 0 or 1

The principal option is a combination as follows:

l 0 - sets ('J' 0) ('C' 0)
l 1 - sets ('J' 1) ('C' 1)
l 2 - sets ('J' 2) ('C' 1)
l 3 - sets ('J' 3) ('C' 1)

For example,
'newfile' (⎕FCREATE⍠3) 0

1
'SEUJCZ' ⎕FPROPS 1

64 0 1 3 1 0

Alternatively:

JFCREATE←⎕FCREATE ⍠ 3

will name a variant of ⎕FCREATE which will create component file with level 3
journaling, and checksum enabled. Then:

'newfile'JFCREATE 0
1

Chapter 3: Component File Improvements 32

File Check and Variant
⎕FCHK, which was implemented before the Variant operator was introduced, has
been changed to support the use of Variant to set options. This has been done for con-
sistency. However, the existing method for setting the options via its left argument
will continue to be supported. There are 3 options:

l Task
l Repair
l Force

Rebuild causes the file indices to be discarded and rebuilt. Repair only takes place on
files which have been checked and found to be damaged. It involves a rebuild, but
that only takes place if it is needed. Note that Repair and Force only apply if Task is
'Scan'.

Task

Scan
causes the file to be checked and optionally repaired (see
'Repair' below)

Rebuild causes the file to be unconditionally rebuilt

Repair (principle option)

0 do not repair

1 causes the file to be repaired if damage is found

Force

0
do not validate the file if it appears to have been properly
closed

1 validate the file even if it appears to have been properly closed

Default values are highlighted thus in the above tables.

Examples
To check a file and attempt to fix it if damage is found:

(⎕FCHK ⍠ 1)'suspect.dcf'

To forcibly check a file and attempt to fix it if damage is found:

(⎕FCHK ⍠ ('Repair' 1)('Force'1))'suspect.dcf'

Chapter 3: Component File Improvements 33

Note that if options are specified using both the Variant operator and a left argument,
the left argument overrides Variant. For example:

MYFCHK ← ⎕FCHK ⍠ 'Task' 'Scan' ⍠ 'Repair' 0

names a variant of ⎕FCHK (identical, in this example, to the default) which can still
be overridden by a left argument.

'rebuild' MYFCHK 'myfile'

Chapter 3: Component File Improvements 34

Chapter 4: Miscellaneous 35

Chapter 4: Miscellaneous

IDE Enhancements
New User Commands
Two new User Commands,]boxing and]rows provide alternate forms of dis-
playing output in the Session.

]boxing
The boxing user command has the following arguments:

l on
l off

and the following modifiers:

l -style = min | mid | max
l -trains = box | tree | parens
l -fns = on | off
l -chars = regular | chars

If boxing is on, arrays resulting from expressions entered in the Session are displayed
with a series of boxes bordering each sub-array. The -stylemodifier controls the
amount of information provided in each border. The -trainsmodifer controls how
function trains (see Function Trains on page 19) are displayed. The -fnsmodifier
controls whether or not boxing is applied to output generated within a function. The
-charsmodifier selects the type of symbol used to draw the borders.

Chapter 4: Miscellaneous 36

Examples
]boxing

Is OFF
⍳⍳3

1 1 1 1 1 2 1 1 3
1 2 1 1 2 2 1 2 3

]boxing on
Was OFF

⍳⍳3
┌─────┬─────┬─────┐
│1 1 1│1 1 2│1 1 3│
├─────┼─────┼─────┤
│1 2 1│1 2 2│1 2 3│
└─────┴─────┴─────┘

]rows
The]rows user command controls how rows in multi-row output to the Session are
displayed. In place of the standard behaviour controlled by the auto-pw parameter or
⎕PW,]rows allows multi-row output to be truncated or wrapped to fit the Session
window, or folded and cut.

Aligning Comments
There is a new Editor command, AC, which is used to align comments in a function
in an edit window.

When you press the <AC> key, or select Align Comments in the Editor's context
menu, the alignment of the comments in every line in the function will be changed so
that the left-most comment (Lamp) symbol is in the same column as the cursor, except
that:

l Comment symbols that lie between the first column and the first tab stop
will remain in or be moved to the first column. For information on setting
tab stops, see Installation & Configuration Guide: Configuration Dialog
(Edit/Trace Tab).

l Comment symbols will not move further left than the end of the statement.

When a comment is re-aligned, text to the right of the left-most comment symbol
(including spaces and other comment symbols) will remain fixed in relation to that
symbol.

Note that there is no keystroke associated with this command by default; the user
must define one. See Installation & Configuration Guide: Configuration Dialog
(Keyboard Shortcuts Tab).

Chapter 4: Miscellaneous 37

New Editor Toolbar Buttons

There are two new buttons on the Editor Toolbar whose functions are as follows:

Search hidden text
Specifies whether or not the search examines collapsed
blocks

Match case
Specifies whether or not the search is case-sensitive.
This setting is shared with the case-sensitivity setting in
the Find/Replace Tool

New Editor Options
Remember previous Window position
(ClassicModeSavePosition parameter)
This parameter specifies whether or not the current size and location of the first of the
editor and tracer windows are remembered for next time. It applies only when Classic
Mode is enabled.

The size and location of the windows are saved in the registry in the subfolderWin-
dowRects/EditWindow and TraceWindow.

Allow search to wrap
(WrapSearch parameter)
This parameter specifies whether or not Search/Replace in the Editor stops at the bot-
tom or top of the text (depending upon the direction of the search), or continues the
search from the start or end as appropriate.

Chapter 4: Miscellaneous 38

New Tracer Options
There are two new options for the Tracer namely Skip blank lines when tracing and
Limit tracer display to function in script, which are enabled or disabled using the
option buttons in the Configuration Dialog: Trace/Edit Tab as shown below.

Skipping comments and blank lines(SkipBlankLines para-
meter)
This parameter causes the Tracer to automatically skip lines that contain no execut-
able statement (i.e. blank lines and comment lines), with the exception of the first
line in the function, and in the case of a traditional function (not a dfn), the last line if
it is a comment.

Limit tracer display to current function in script
(AddClassHeaders parameter)
This parameter specifies what the Tracer displays when tracing the execution of a
function in a script. If set to 1, the Tracer displays just the first line of the script and
the function in question. If set to 0, the entire script is shown in the Tracer window.

Chapter 4: Miscellaneous 39

Editor, Tracer and scripted objects
Editor, Tracer and objects fixed in scripted objects
A scripted object can be created either by using the Editor or by calling ⎕FIX.

The source of a scripted object can be altered only using the Editor, or by refixing
using ⎕FIX. Dynamic changes to variables, fields and properties, and calling ⎕FX to
generate functions do not alter the source of a scripted object. This behaviour has not
changed since the introduction of scripted objects, and does not change in Version
14.0.

Prior to Version 14.0, ⎕FXing a function in a scripted object lead to apparent anom-
alies when tracing and editing such functions - the Tracer and Editor displayed the
version of the function that was part of the source of the scripted object even though
the ⎕FXed function was the version of the function that was being executed.

Now both the Tracer and the Editor display the ⎕FXed function; the statusfield will
contain either "Unscripted function" or "Unscripted operator". In addition, if a func-
tion is in the source of a scripted object, the Editor and Tracer windows will display
the whole script (possibly in a collapsed state) whereas a ⎕FXed function will dis-
play in a window on its own.

This behaviour is true when calling ⎕FIXed in scripted object too.

A scripted object can be created either by using the Editor or by calling ⎕FIX.

Change to fixing scripted objects in the Editor
In Versions prior to 14.0 adding or removing a Stop on a line in a function in a scrip-
ted object would have lead to the function being refixed. This is no longer true.

Chapter 4: Miscellaneous 40

Value Tips for External Functions
Value Tips can also be used to investigate the syntax of external functions. If you
hover over the name of an external function, the Value Tip displays its Function Sig-
nature.

For example, in the example below, the mouse is hovered over the external function
dt.AddMonths and shows that it requires a single integer as its argument.

Chapter 4: Miscellaneous 41

Should the external function provide more than one signature, they are all shown in
the Value Tip as illustrated below. Here the function ToString has four different
overloads.

Chapter 4: Miscellaneous 42

Window Captions
The captions of the various windows that comprise the Dyalog Integrated Devel-
opment Environment (IDE) are user-configurable and defined by entries in the Win-
dows registry in the Captions subkey of the main Dyalog key.

Note that this only applies when the windows are floating (un-docked). When a win-
dow is docked Dyalog displays a fixed non-configurable caption.

Note also that the Captions subkey is not created by the interpreter; the user must cre-
ate the subkey and the values.

Each entry is a string value whose name identifies the window as follows:

Window Name Description

Session The main Dyalog APL session window

Editor The Editor window

MessageBox
The notification Message Box that is displayed in various
circumstances; for example, when an object cannot be fixed
by the Editor

Explorer The Workspace Explorer tool

Rebuild Errors The dialog box that is displayed if one or more objects
cannot be re-instantiated when a workspace is loaded

Status The Status window

Refactor The Refactor as Method/Field/Property window that is
displayed by the Editor

Event Viewer The Event Viewer

FindReplace The Find/Replace dialog box used by the Editor

ExitDialog The Exit dialog box that is displayed when the user closes
the Session window

WSSearch The Find Objects tool

Chapter 4: Miscellaneous 43

Each string value should contain a mixture of your own text and keywords which are
enclosed in braces, e.g. {TITLE}. Keywords act like variables and are replaced at dis-
play time by corresponding values as described in the table below.

Keyword Value

{TITLE} The window name shown in the first column of the previous
table

{WSID} Workspace ID (⎕WSID)

{NSID} Current Namespace

{SNSID} Current Namespace (short version)

{PRODUCT} The name of the Dyalog product, e.g. "Dyalog APL/W - 64"

{VER_A} The main version number, e.g. "14"

{VER_B} The secondary version number, e.g. "0"

{VER_C} The tertiary version number (currently the internal revision
number)

{PID} The process ID

{CHARS} "Classic" or "Unicode"

{BITS} "32" or "64"

{XLOC} The namespace currently being explored (Explorer only)

For example, if the Registry contains .\Captions\Session whose value is:

My APL ({WSID}) Version {VER_A}.{VER_B}[{VER_C}] - {PID}

then the caption displayed in a new Dyalog APL Session window might be:

My APL (CLEAR WS) Version 14.0[20105] - 4616

Chapter 4: Miscellaneous 44

Specifying Overloads and Casts for .Net
If a .NET function is overloaded in terms of the types of arguments it accepts, Dyalog
APL chooses which overload to call depending upon the data types of the arguments
passed to it. For example, if a .NET function foo() is declared to take a single argu-
ment either of type int or of type double APL would call the first version if you
called it with an integer value and the second version if you called it with a non-
integer value.

In some circumstances it may be desirable to override this mechanism and explicitly
specify which overload to use.

A second requirement is to be able to specify to what .NET types APL should coerce
arrays before calling a .NET function. For example, if a parameter to a .NET function
is declared as type System.Object, it might be necessary to force the APL argu-
ment to be cast to a particular type of Object before the function is called.

Both these requirements are met by calling the function via the Variant operator ⍠.
There are two options,OverloadTypes (the Principle Option) and CastToTypes.
Each option takes an array of refs to .NET types, the same length as the number of
parameters to the function.

OverloadTypes Examples
To force APL to call the double version of function foo() regardless of the type of
the argument val:

(foo ⍠('OverloadTypes'Double))val

or more simply:

(foo ⍠Double)val

Note that Double is a ref to the .NET type System.Double.

⎕USING←'System'
Double

(System.Double)

Taking this a stage further, suppose that foo() is defined with 5 overloads as fol-
lows:

foo()
foo(int i)
foo(double d)
foo(double d, int i)
foo(double[] d)

The following statements will call the niladic, double, (double, int) and double[]
overloads respectively.

Chapter 4: Miscellaneous 45

(foo ⍠ (⊂⍬)) ⍬ ⍝ niladic
(foo ⍠ Double) 1 ⍝ double
(foo ⍠(⊂Double Int32))1 1 ⍝ double,int
(foo ⍠(Type.GetType ⊂'System.Double[]'))⊂1 1 ⍝ double[]

Note that in the niladic case, an enclosed empty vector is used to represent a null ref-
erence to a .NET type.

CastToTypes Example
The .NET function Array.SetValue() sets the value of a specified element (or
elements) of an array. The first argument, the new value, is declared as
System.Object, but the value supplied must correspond to the type of the Array
in question. APL has no means to know what this is and will therefore pass the value
as is, i.e. in whatever internal format it happens to be at the time. For example:

⎕USING←'System'

⍝ create a Boolean array with 2 elements
BA←Array.CreateInstance Boolean 2
BA.GetValue 0 ⍝ get the 0th element

0

⍝ attempt to set the 0th element to 1 (AKA true)

BA.SetValue 1 0
EXCEPTION: Cannot widen from source type to target type
either because the source type is a not a primitive type
or the conversion cannot be accomplished.
test[5] BA.SetValue 1 0

∧

The above expression failed because APL passed the first argument 1 ,unchanged
from its current internal representation, as a 1-byte integer which does not fit into a
Boolean element.

To rectify the situation, APL must be told to cast the argument to a Boolean as fol-
lows:

(BA.SetValue ⍠ ('CastToTypes'(Boolean Int32)))1 0
BA.GetValue 0 ⍝ get the 0th element

1

Chapter 4: Miscellaneous 46

Overloaded Constructors
If a class provides constructor overloads, a similar mechanism is used to specify
which of the constructors is to be used when an instance of the class is created using
⎕NEW.

For example, if MyClass is a .NET class with an overloaded constructor, and one of
its constructors is defined to take two parameters; a double and an int, the fol-
lowing statement would create an instance of the class by calling that specific con-
structor overload:

(⎕NEW ⍠ (⊂Double Int32)) MyClass (1 1)

Chapter 4: Miscellaneous 47

APL Application as a Service
Introduction
Dyalog APL provides a mechanism for users to register and manage an application
workspace as a Windows service. The application workspace must implement an
interface to handle messages from the Windows Service Control Manager (SCM) in
addition to the code required to drive the application.

Windows Services run as background tasks controlled by the SCM.When the com-
puter is started, Windows Services are run before a user logs on to the system and do
not normally interact with the desktop. A Dyalog service is run under the auspices of
Local System.

Installing and Uninstalling a Dyalog Service
To install a Dyalog service it is necessary to run dyalog.exe from the command
line with administrator privileges, specifying the application workspace and the fol-
lowing parameters, where service_name is a name of your choice.

l APL_ServiceInstall=service_name

The command must specify the full pathname to dyalog.exe and to the applic-
ation workspace. A slightly modified version of this command line will be stored by
the SCM and re-executed whenever the service is started.

Dyalog installs the service with a Startup Type of Automatic. This means that it will
be started automatically whenever the computer is restarted. However, it is necessary
to start it manually (using the SCM) the first time after it is installed.

The same command must be used to uninstall the service, but with:

l APL_ServiceUninstall=service_name

The following table summarises the parameters that can be specified by the user.
Other parameters will appear on the command line in the SCM, but should not be spe-
cified by the user.

Parameter Description

APL_ServiceInstall

Causes Dyalog to register the named service, using
the current command line, but with APL_
ServiceRun replacing APL_ServiceInstall in the
SCM.

APL_ServiceUninstall Causes Dyalog to uninstall the named service.

Chapter 4: Miscellaneous 48

The Application Workspace
The application workspace must be designed to handle and respond (in a timely man-
ner) to notification messages from the SCM as well as to provide the application
logic. SCM notifications include instructions to start, stop, pause and resume.

SCM notification messages generate a ServiceNotification event on the Root object.
To handle these messages, it is necessary to attach a callback function to this event,
and to invoke the Wait method or ⎕DQ'.' to process them. This must be executed in
thread 0.

If the application is designed to be driven from events such as Timer or TCPSocket or
user-defined events, it too may be implemented via callbacks in thread 0 under the
control of the same Wait method or ⎕DQ'.'. If the application uses Conga it is
recommended that it runs in a separate thread.

The workspace samples\aplservice\aplservice.dws is included in the
APL release. Its start-up function is as follows:

⎕lX←'Start'

∇ Start;ServiceState;ServiceControl
[1] :If 'W'≠3⊃#.⎕WG'APLVersion'
[2] ⎕←'This workspace only works using Dyalog APL for

Windows version 14.0 or later'
[3] :Return
[4] :EndIf
[5] :If 0∊⍴2 ⎕NQ'.' 'GetEnvironment' 'RunAsService'
[6] Describe
[7] :Return
[8] :EndIf
[9] ⍝ Define SCM constants
[10] HashDefine
[11] ⍝ Set up callback to handle SCM notifications
[12] '.'⎕WS'Event' 'ServiceNotification' 'ServiceHandler'
[13] ⍝ Global variable defines current state of the service
[14] ServiceState←SERVICE_RUNNING
[15] ⍝ Global variable defines last SCM notification to the

service
[16] ServiceControl←0
[17] ⍝ Application code runs in a separate thread
[18] Main&0
[19] ⎕DQ'.'
[20] ⎕OFF

∇

Chapter 4: Miscellaneous 49

Handling ServiceNotification Events
To give the workspace (which may be busy) time to respond to SCM notifications,
Dyalog responds immediately to confirm that the service has entered the appropriate
pending state. For example, if the notification is SERVICE_CONTROL_STOP,
Dyalog informs the SCM that the service state is SERVICE_STOP_PENDING. It is
then up to the callback function to confirm that the state has reached SERVICE_
STOPPED.

The following sample function is provided in APLService.dws.

ServiceHandler Callback Function
∇ r←ServiceHandler(obj event action state);sink

[1] ⍝ Callback to handle notifications from the SCM
[2]
[3] ⍝ Note that the interpreter has already responded
[4] ⍝ automatically to the SCM with the corresponding
[5] ⍝ "_PENDING" message prior to this callback being reached
[6]
[7] ⍝ This callback uses the SetServiceState Method to confirm
[8] ⍝ to the SCM that the requested state has been reached
[9]
[10] r←0 ⍝ so returns a 0 result (the event has been handled,
[11] ⍝ no further action required)
[12]
[13] ⍝ It stores the desired state in global ServiceState to
[14] ⍝ notify the application code which must take appropriate
[15] ⍝ action. In particular, it must respond to a "STOP or
[16] ⍝ "SHUTDOWN" by terminating the APL session
[17]
[18] :Select ServiceControl←action
[19] :CaseList SERVICE_CONTROL_STOP SERVICE_CONTROL_SHUTDOWN
[20] ServiceState←SERVICE_STOPPED
[21] state[4 5 6 7]←0
[22]
[23] :Case SERVICE_CONTROL_PAUSE
[24] ServiceState←SERVICE_PAUSED
[25]
[26] :Case SERVICE_CONTROL_CONTINUE
[27] ServiceState←SERVICE_RUNNING
[28] :Else
[29] :If state[2]=SERVICE_START_PENDING
[30] ServiceState←SERVICE_RUNNING
[31] :EndIf
[32] :EndSelect
[33] state[2]←ServiceState
[34] sink←2 ⎕NQ'.' 'SetServiceState'state

∇

Chapter 4: Miscellaneous 50

The Application Code
The following function illustrates how the applcation code for the service might be
structured. It is merely an illustration, but however it is done, it is important that the
code handles the instructions to pause, continue and stop in an appropriate manner.
In this example, the function Main creates a log file and writes to it when the state of
the service changes.

∇ Main arg;nid;log;LogFile
[1] ⎕NUNTIE ⎕NNUMS
[2] log←{((⍕⎕TS),' ',⍵,⎕UCS 13 10)⎕NAPPEND ⍺}
[3] LogFile←'c:\ProgramData\TEMP\APLServiceLog.txt'
[4] :Trap 22
[5] nid←LogFile ⎕NCREATE 0
[6] :Else
[7] :Trap 22
[8] nid←LogFile ⎕NTIE 0
[9] 0 ⎕NRESIZE nid
[10] :Else
[11] ⎕←'Unable to tie or create logfile'
[12] :EndTrap
[13] :EndTrap
[14] nid log'Starting'
[15] :While ServiceState≠SERVICE_STOPPED
[16] :If ServiceControl≠0 ⋄

nid log'ServiceControl=',⍕ServiceControl ⋄ :EndIf
[17] :If ServiceState=SERVICE_RUNNING
[18] nid log'Running'
[19] :ElseIf ServiceState=SERVICE_PAUSED
[20] ⍝ Pause application
[21] :EndIf
[22] ServiceControl←0 ⍝ Reset (we only want to log changes)
[23] ⎕DL 10 ⍝ Just to prevent busy loop
[24] :EndWhile
[25] ⎕NUNTIE nid
[26] ⎕OFF 0

∇

Chapter 4: Miscellaneous 51

Debugging Dyalog Services
Services are run in the background under the auspices of Local System, and not asso-
ciated with an interactive user. Neither the APL Session nor any GUI components
that it creates will be visible on the desktop. This prevents the normal editing and
debugging tools from being available.

However, the Dyalog APL Remote Integrated Development environment (RIDE)
may be connected to any APL session, including one running as a Windows Service,
and provide a debugging environment. For more information, see the Dyalog RIDE
User Guide.

Event Logging
When a service is installed or removed, Dyalog APL records events in the Dyalog
APL section of the Applications and Services Logswhich can be viewed using the
Windows system Event Viewer.

Chapter 4: Miscellaneous 52

Causeway Tools
Overview
SharpPlot has been available for about ten years as a direct replacement for RainPro.
It is a conversion of the original APL code into compiled C++ and provides all of the
original functionality and more.

SharpPlot is shipped in two forms :

l sharpplot.dll: a Microsoft .Net assembly for Windows, which may
also be run on Unix platforms using Mono1

l sharpplot.dws: a Dyalog APL workspace that permits SharpPlot to be
used on platforms other than .Net

Dyalog recommends upgrading from RainPro to SharpPlot as soon as possible, for a
number of reasons :

l It has a more consistent API, and clearer documentation
l It supports more advanced graphics features such as alpha blending and

anti-aliased raster graphics.
l It provides better performance (SharpPlot is consistently several times faster

than RainPro).
l It provides multi-platform support (RainPro is supported only on windows)
l It includes free support for licensed users, including requests for enhance-

ments

RainPro is still supported on Windows platforms, and bugs will be fixed for com-
mercial users.

RainPro-to-SharpPlot Transition : SharpRain.dws
SharpRain is a transition tool designed to help Windows users to switch from
RainPro to SharpPlot. It is a compatible emulator for RainPro/APL scripts, using
SharpPlot/.Net as the backend, and provides better graphics and better performance
(generally twice as fast as RainPro).

In addition, it can convert a RainPro script into a SharpPlot script, which will provide
further performance improvement (generally 5 to 10 times faster than RainPro)

Further details are provided in sharprain.dws.

1Mono is an open source implementation of Microsoft's .NET Framework.
For more information, see www.mono-project.com.

http://http//www.mono-project.com

Chapter 4: Miscellaneous 53

Multi-Platform graphics
In Version14.0, SharpPlot is also shipped as an APL workspace (SharpPlot.dws),
which will run on all platforms supported by Dyalog.

Raster graphics and custom fonts are not supported, and the API is slightly different
from the .Net version. In particular, Properties are accessed through Get*/Set* func-
tions rather than through a variable. These functions provide greater flexibility in
terms of the arguments they will accept.

Further details are provided in SharpPlot.dws.

The SharpPlot.dll .Net assembly can still be used on non-Windows platform
through Mono.

Chart Wizard
The chart wizard is a GUI tool to produce arbitrarily complex SharpPlot charts.

It is implemented by the]chart user command, which takes an APL expression as
its argument. The chart wizard will then produce either the chart image, or a script
that will generate the same image, for integration into user application.

Sessions can also be saved and loaded for complex chart elaboration.

Chapter 4: Miscellaneous 54

Chapter 5: Language Reference Changes 55

Chapter 5:

Language Reference Changes

Cells and Sub-arrays
Certain functions and operators operate on particular cells or sub-arrays of an array,
which are identified and described as follows.

K-Cells
A rank-k cell or k-cell of an array are terms used to describe a sub-array on the last k
axes of the array. Negative k is interpreted as r+k where r is the rank of the array,
and is used to describe a sub-array on the leading |k axes of an array.

If X is a 3-dimensional array of shape 2 3 4, the 1-cells are its 6 rows each of 4 ele-
ments; and its 2-cells are its 2 matrices each of shape 3 4. Its 3-cells is the array in its
entirety. Its 0-cells are its individual elements.

Major Cells
The major cells of an array X is a term used to describe the sub-arrays on the leading
dimension of the array X with shape 1↓⍴X. Using the k-cell terminology, the major
cells are its ¯1-cells.

The major cells of a vector are its elements (0-cells). The major cells of a matrix are its
rows (1-cells), and the major cells of a 3-dimensional array are its matrices along the
first dimension (2-cells).

Chapter 5: Language Reference Changes 56

Examples
In the following, the major cells of A are 1979, 1990, 1997, 2007, and 2010; those of
B are 'Thatcher', 'Major', 'Blair', 'Brown', and 'Cameron'; and those
of C are the four 2-by-3 matrices.

A
1979 1990 1997 2007 2010

B
Thatcher
Major
Blair
Brown
Cameron

⍴B
5 8

⎕←C←4 2 3⍴⍳24
0 1 2
3 4 5

6 7 8
9 10 11

12 13 14
15 16 17

18 19 20
21 22 23

Using the k-cell terminology, if r is the rank of the array, its major cells are its r-1-
cells.

Note that if the right operand k of the Rank Operator ⍤ is negative, it is interpreted as
0⌈r+k. Therefore the value ¯1 selects the major cells of the array.

Chapter 5: Language Reference Changes 57

Tally R←≢Y

Ymay be any array. R is a simple numeric scalar.

Tally returns the number of major cells of Y. This can also be expressed as the length
of the leading axis or 1 if Y is a scalar. Tally is equivalent to the function {⍬⍴
(⍴⍵),1}.

Examples
≢2 3 4⍴⍳10

2
≢2

1
≢⍬

0

Note that ≢V is useful for returning the length of vector V as a scalar. (In contrast, ⍴V
is a one-element vector.)

Index Of R←X⍳Y

Ymay be any array. Xmay be any array of rank 1 or more.

Vector Left Argument
If X is a vector, the result R is a simple integer array with the same shape as Y identi-
fying where elements of Y are first found in X. If an element of Y cannot be found in
X, then the corresponding element of R will be ⎕IO+⊃⍴X.

Elements of X and Y are considered the same if X≡Y returns 1 for those elements.

⎕IO and ⎕CT/⎕DCT are implicit arguments of Index Of.

Examples
⎕IO←1

2 4 3 1 4⍳1 2 3 4 5
4 1 3 2 6

'CAT' 'DOG' 'MOUSE'⍳'DOG' 'BIRD'
2 4

Chapter 5: Language Reference Changes 58

Higher-Rank Left Argument
If X is a higher rank array, the function locates the first occurrence of sub-arrays in Y
which match major cells of X, where a major cell is a sub-array on the leading dimen-
sion of X with shape 1↓⍴X. In this case, the shape of the result R is (1-⍴⍴X)↓⍴Y.

If a sub-array of Y cannot be found in X, then the corresponding element of R will be
⎕IO+⊃⍴X.

Examples
X←3 4⍴⍳12

X
1 2 3 4
5 6 7 8
9 10 11 12

X⍳1 2 3 4
1

Y←2 4⍴1 2 3 4 9 10 11 12
Y

1 2 3 4
9 10 11 12

X⍳Y
1 3

X⍳2 3 4 1
4

X1←10 100 1000∘.+X
X1

11 12 13 14
15 16 17 18
19 20 21 22

101 102 103 104
105 106 107 108
109 110 111 112

1001 1002 1003 1004
1005 1006 1007 1008
1009 1010 1011 1012

X1⍳100 1000∘.+X
2 3

Chapter 5: Language Reference Changes 59

More Examples
x

United Kingdom
Germany
France
Italy
United States
Canada
Japan
Canada
France

y
United Kingdom
Germany
France
Italy
USA

Canada
Japan
China
India
Deutschland

⍴x
9 14

⍴y
2 5 14

x⍳y
1 2 3 4 10
6 7 10 10 10

x⍳x
1 2 3 4 5 6 7 6 3

Note that the expression (y⍳x) signals a LENGTH ERROR because it looks for
major cells in the left argument, whose shape is 5 14(1↓⍴y), which is not the same
as the trailing shape of x.

y⍳x
LENGTH ERROR

y⍳x
∧

Chapter 5: Language Reference Changes 60

Mix (⎕ML) R←↑[K]Y or R←⊃[K]Y

The symbol chosen to represent Mix depends on the current Migration Level.

If ⎕ML<2, Mix is represented by the symbol: ↑.

If ⎕ML≥2, Mix is represented by the symbol: ⊃.

Ymay be any array whose items may be uniform in rank and shape, or differ in rank
and shape. If the items of Y are non-uniform, they are extended prior to the applic-
ation of the function as follows:

1. If the items of Y have different ranks, each item is extended in rank to that
of the greatest rank by padding with leading 1s.

2. If the items of Y have different shapes, each is padded with the cor-
responding prototype to a shape that represents the greatest length along
each axis of all items in Y.

For the purposes of the following narrative, y represents the virtual item in Y with the
greatest rank and shape, with which all other items are extended to conform.

R is an array composed from the items of Y assembled into a higher-rank array with
one less level of nesting. ⍴R will be some permutation of (⍴Y),⍴y.

K is an optional axis specification whose value(s) indicate where in the result the
axes of y appear. There are three cases:

1. For all values of ⎕ML, K may be a scalar or 1-element vector whose value is
a fractional number indicating the two axes of Y between which new axes
are to be inserted for y. The shape of R is the shape of Y with the shape ⍴y
inserted between the ⌊Kth and the ⌈Kth axes of Y

2. If ⎕ML≥2, K may be a scalar or 1-element vector integer whose value spe-
cifies the position of the first axis of y in the result. This case is identical to
the fractional case where K (in this case) is ⌈K (in the fractional case).

3. If ⎕ML≥2, K may be a vector, with the same length as ⍴y, each element of
which specifies the position in the result of the corresponding axis of the y.

If K is absent, the axes of y appear as the last axes of the result.

Chapter 5: Language Reference Changes 61

Simple Vector Examples
In this example, the shape of Y is 3, and the shape of y is 2. So the shape of the result
will be a permutation of 2 and 3, i.e. in this simple example, either (2 3) or (3 2).

If K is omitted, the shape of the result is (⍴Y),⍴y.

↑(1 2)(3 4)(5 6)
1 2
3 4
5 6

If K is between 0 and 1, the shape of the result is (⍴y),⍴Y because (⍴y) is inserted
between the 0th and the 1st axis of the result, i.e. at the beginning.

↑[.5](1 2)(3 4)(5 6)
1 3 5
2 4 6

If K is between 1 and 2, the shape of the result is (⍴Y),⍴y because (⍴y) is inserted
between the 1st and 2nd axis of the result, i.e. at the end. This is the same as the case
when K is omitted.

↑[1.5](1 2)(3 4)(5 6)
1 2
3 4
5 6

If ⎕ML≥2 an integer Kmay be used instead (Note that ⊃ is used instead of ↑).

⎕ML←3
⊃(1 2)(3 4)(5 6)

1 2
3 4
5 6

⊃[1](1 2)(3 4)(5 6)
1 3 5
2 4 6

⊃[2](1 2)(3 4)(5 6)
1 2
3 4
5 6

Chapter 5: Language Reference Changes 62

Shape Extension
If the items of Y are unequal in shape, the shorter ones are extended:

⎕ML←3
⊃(1)(3 4)(5)

1 0
3 4
5 0

⊃1(3 4)(5)
1 3 5
0 4 0

More Simple Vector Examples:
]box on

Was OFF
⎕ML←3
⊃('andy' 19)('geoff' 37)('pauline' 21)

┌───────┬──┐
│andy │19│
├───────┼──┤
│geoff │37│
├───────┼──┤
│pauline│21│
└───────┴──┘

⊃[1]('andy' 19)('geoff' 37)('pauline' 21)
┌────┬─────┬───────┐
│andy│geoff│pauline│
├────┼─────┼───────┤
│19 │37 │21 │
└────┴─────┴───────┘

⊃('andy' 19)('geoff' 37)(⊂'pauline')
┌───────┬───────┐
│andy │19 │
├───────┼───────┤
│geoff │37 │
├───────┼───────┤
│pauline│ │
└───────┴───────┘

Notice that in the last statement, the shape of the third item was extended by cat-
enating it with its prototype.

Chapter 5: Language Reference Changes 63

Example (Matrix of Vectors)
In the following examples, Y is a matrix of shape (5 4) and each item of Y (y) is a
matrix of shape (3 2). The shape of the result will be some permutaion of (5 4 3
2).

Y←5 4⍴(⍳20)×⊂3 2⍴1
Y

┌─────┬─────┬─────┬─────┐
│1 1 │2 2 │3 3 │4 4 │
│1 1 │2 2 │3 3 │4 4 │
│1 1 │2 2 │3 3 │4 4 │
├─────┼─────┼─────┼─────┤
│5 5 │6 6 │7 7 │8 8 │
│5 5 │6 6 │7 7 │8 8 │
│5 5 │6 6 │7 7 │8 8 │
├─────┼─────┼─────┼─────┤
│9 9 │10 10│11 11│12 12│
│9 9 │10 10│11 11│12 12│
│9 9 │10 10│11 11│12 12│
├─────┼─────┼─────┼─────┤
│13 13│14 14│15 15│16 16│
│13 13│14 14│15 15│16 16│
│13 13│14 14│15 15│16 16│
├─────┼─────┼─────┼─────┤
│17 17│18 18│19 19│20 20│
│17 17│18 18│19 19│20 20│
│17 17│18 18│19 19│20 20│
└─────┴─────┴─────┴─────┘

By default, the axes of y appear in the last position in the shape of the result, but this
position is altered by specifying the axis K. Notice where the (3 2) appears in the
following results:

⍴⊃Y
5 4 3 2

⍴⊃[1]Y
3 2 5 4

⍴⊃[2]Y
5 3 2 4

⍴⊃[3]Y
5 4 3 2

⍴⊃[4]Y
INDEX ERROR

⍴⊃[4]Y
∧

Note that ⊃[4]Y generates an INDEX ERROR because 4 is greater than the length of
the result.

Chapter 5: Language Reference Changes 64

Example (Vector K)
The axes of y do not have to be contiguous in the shape of the result. By specifying a
vector K, they can be distributed. Notice where the 3 and the 2 appear in the fol-
lowing results:

⍴⊃[1 3]Y
3 5 2 4

⍴⊃[1 4]Y
3 5 4 2

⍴⊃[2 4]Y
5 3 4 2

⍴⊃[4 2]Y
5 2 4 3

Rank Extension
If the items of Y are unequal in rank, the lower rank items are extended in rank by pre-
fixing their shapes with 1s. Each additonal 1 may then be increased to match the max-
imum shape of the other items along that axis.

⎕ML←3
Y←(1)(2 3 4 5)(2 3⍴10×⍳8)
Y

┌─┬───────┬────────┐
│1│2 3 4 5│10 20 30│
│ │ │40 50 60│
└─┴───────┴────────┘

⍴⊃Y
3 2 4

⊃Y
1 0 0 0
0 0 0 0

2 3 4 5
0 0 0 0

10 20 30 0
40 50 60 0

In the above example, the first item (1) becomes (1 1⍴1) to conform with the 3rd
item which is rank 2. It is then extended in shape to become (2 4↑1 1⍴1) to con-
form with the 2-row 3rd item, and 4-column 2nd item.. Likewise, the 2nd item
becomes a 2-row matrix, and the 3rd item gains another column.

Chapter 5: Language Reference Changes 65

Key R←{X}f⌸Y

fmay be any dyadic function that returns a result.

If Xis specified, it is an array whose major cells specify keys for corresponding major
cells of Y. The Key operator ⌸ 1 applies the function f to each unique key in X and
the major cells of Y having that key.

If X is omitted, Y is an array whose major cells represent keys.

In this case, the Key operator applies the function fto each unique key in Y and the
elements of ⍳≢Y having that key. f⌸Y is the same as Y f⌸⍳≢Y.

Key is similar to the GROUP BY clause in SQL.

Example
cards←'2' 'Queen' 'Ace' '4' 'Jack'
suits←'Spades' 'Hearts' 'Spades' 'Clubs' 'Hearts'

suits,[1.5]cards
Spades 2
Hearts Queen
Spades Ace
Clubs 4
Hearts Jack

suits {⍺':'⍵}⌸ cards
Spades : 2 Ace
Hearts : Queen Jack
Clubs : 4

In this example, both arrays are vectors so their major cells are their elements. The
function {⍺':'⍵} is applied between the unique elements in suits ('Spades'
'Hearts' 'Clubs') and the elements in cards grouped according to their cor-
responding elements in suits, i.e. ('2' 'Ace'), ('Queen' 'Jack') and ('4').

1The symbol ⌸ is not available in Classic Edition, and the Key operator is instead represented by
⎕U2338

Chapter 5: Language Reference Changes 66

Monadic Example
{⍺ ⍵} ⌸ suits ⍝ indices of unique major cells

Spades 1 3
Hearts 2 5
Clubs 4

{⍺,≢⍵} ⌸ suits ⍝ count of unique major cells
Spades 2
Hearts 2
Clubs 1

Further Examples
x is a vector of stock codes, y is a corresponding matrix of values.

⍴x
10

⍴y
10 2

x,y
IBM 13 75
AAPL 45 53
GOOG 21 4
GOOG 67 67
AAPL 93 38
MSFT 51 83
IBM 3 5
AAPL 52 67
AAPL 0 38
IBM 6 41

If we apply the function {⍺ ⍵} to x and y using the ⌸ operator, we can see how the
rows (its major cells) of y are grouped according to the corresponding elements (its
major cells) of x.

x{⍺ ⍵}⌸y
IBM 13 75

3 5
6 41

AAPL 45 53
93 38
52 67
0 38

GOOG 21 4
67 67

MSFT 51 83

Chapter 5: Language Reference Changes 67

More usefully, we can apply the function {⍺(+⌿⍵)}, which delivers the stock codes
and the corresponding totals in y:

x{⍺(+⌿⍵)}⌸y
IBM 22 121
AAPL 190 196
GOOG 88 71
MSFT 51 83

There is no need for the function to use its left argument. So to obtain just the totals
in y grouped by the stock codes in x:

x{+⌿⍵}⌸y
22 121

190 196
88 71
51 83

Defined Function Example
This example appends the data for a stock into a component file named by the sym-
bol.

∇ r←stock foo data;fid;file
[1] file←⊃stock
[2] :Trap 0
[3] fid←file ⎕FTIE 0
[4] file ⎕FERASE fid
[5] :EndTrap
[6] fid←file ⎕FCREATE 0
[7] r←data ⎕FAPPEND fid
[8] ⎕FUNTIE fid

∇

x foo⌸y
1 1 1 1

Example
{⍺ ⍵} ⌸ suits ⍝ indices of unique major cells

Spades 1 3
Hearts 2 5
Clubs 4

{⍺,≢⍵} ⌸ suits ⍝ count of unique major cells
Spades 2
Hearts 2
Clubs 1

Chapter 5: Language Reference Changes 68

Another Example
Given a list of names and scores., the problem is to sum the scores for each unique
name. A solution is presented first without using the Key operator, and then with the
Key operator.

names ⍝ 12, some repeat
Pete Jay Bob Pete Pete Jay Jim Pete Pete Jim
Pete Pete

(∪names)∘.≡names
1 0 0 1 1 0 0 1 1 0 1 1
0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0

scores
66 75 71 100 22 10 67 77 55 42 1 78

b←↓(∪names)∘.≡names
]disp b/¨⊂⍳12

┌→──────────────┬───┬─┬────┐
│1 4 5 8 9 11 12│2 6│3│7 10│
└~─────────────→┴~─→┴→┴~──→┘

+/¨b/¨⊂scores
399 85 71 109

]disp {⊂⍵}⌸ names
┌→──────────────┬───┬─┬────┐
│1 4 5 8 9 11 12│2 6│3│7 10│
└~─────────────→┴~─→┴→┴~──→┘

names {+/⍵}⌸ scores
399 85 71 109

Chapter 5: Language Reference Changes 69

Rank R←{X}f⍤kY

If X is omitted, fmay be any monadic function that returns a result. Ymay be any
array.

The Rank operator ⍤1 applies function f successively to the sub-arrays in Y specified
by k. If k is positive, it selects the k-cells of Y. If k is negative, it selects the (r+k)-
cells of Y where r is its rank. If k is ¯1 it selects the major cells of Y.

If X is specified, fmay be any dyadic function that returns a result. Ymay be any
array.

In this case, the Rank operator applies function f successively between the sub-
arrays in X and Y specified by k. k is a 2-element integer vector, or a scalar (which is
implicitly extended), whose first element selects sub-arrays in X and whose second
element selects sub-arrays of Y.

For further information, see Programmer's Guide: Cells and SubarraysCells and
Sub-arrays on page 55.

Notice that it is necessary to prevent the right operand k binding to the right argu-
ment. This can be done using parentheses e.g. (f⍤1)Y. The same can be achieved
using ⊢ because ⍤ binds tighter to its right operand than ⊢ does to its left argument,
and ⊢ therefore resolves to Identity.

Monadic Examples
Using enclose (⊂) as the left operand elucidates the workings of the rank operator.

Y
36 99 20 5
63 50 26 10
64 90 68 98

66 72 27 74
44 1 46 62
48 9 81 22

⍴Y
2 3 4

1The symbol ⍤ is not available in Classic Edition, and the Rank operator is instead represented by
⎕U2364

Chapter 5: Language Reference Changes 70

⊂⍤2 ⊢Y
┌───────────┬───────────┐
│36 99 20 5│66 72 27 74│
│63 50 26 10│44 1 46 62│
│64 90 68 98│48 9 81 22│
└───────────┴───────────┘

⊂⍤1 ⊢Y
┌───────────┬───────────┬───────────┐
│36 99 20 5 │63 50 26 10│64 90 68 98│
├───────────┼───────────┼───────────┤
│66 72 27 74│44 1 46 62 │48 9 81 22 │
└───────────┴───────────┴───────────┘

The function {(⊂⍋⍵)⌷⍵} sorts a vector.

{(⊂⍋⍵)⌷⍵} 3 1 4 1 5 9 2 6 5
1 1 2 3 4 5 5 6 9

The rank operator can be used to apply the function to sub-arrays; in this case to sort
the 1-cells (rows) of a 3-dimensional array.

Y
36 99 20 5
63 50 26 10
64 90 68 98

66 72 27 74
44 1 46 62
48 9 81 22

({(⊂⍋⍵)⌷⍵}⍤1)Y
5 20 36 99

10 26 50 63
64 68 90 98

27 66 72 74
1 44 46 62
9 22 48 81

Chapter 5: Language Reference Changes 71

Dyadic Examples
10 20 30 (+⍤0 1)3 4⍴⍳12

10 11 12 13
24 25 26 27
38 39 40 41

Using the function {⍺ ⍵} as the left operand demonstrates how the dyadic case of
the rank operator works.

10 20 30 ({⍺ ⍵}⍤0 1)3 4⍴⍳12
┌──┬─────────┐
│10│0 1 2 3 │
├──┼─────────┤
│20│4 5 6 7 │
├──┼─────────┤
│30│8 9 10 11│
└──┴─────────┘

Note that a right operand of ¯1 applies the function between the major cells (in this
case elements) of the left argument, and the major cells (in this case rows) of the right
argument.

10 20 30 ({⍺ ⍵}⍤¯1)3 4⍴⍳12
┌──┬─────────┐
│10│0 1 2 3 │
├──┼─────────┤
│20│4 5 6 7 │
├──┼─────────┤
│30│8 9 10 11│
└──┴─────────┘

Chapter 5: Language Reference Changes 72

Function Trains

Introduction
A Train is a sequence of 2 or 3 items in an expression which bind together to form a
function. Each item in a train may be an array or a function but the right-most item
must be a function.

Forks and Atops
The following trains are supported where f, g and h are functions and A is an array:

f g h
A g h

g h

The 3-item trains (f g h) and (A g h) are termed forkswhile the 2-item train (g
h) is termed an atop. To distinguish the two styles of fork, we can use the terms fgh-
fork or Agh-fork.

Trains as Functions
A train is syntactically equivalent to a function and so, in common with any other
function, may be:

l named using assignment
l applied to or between arguments
l consumed by operators as operands
l and so forth.

In particular, trains may be applied to a single array (monadic use) or between 2
arrays (dyadic use), providing six new constructs.

⍺(f g h)⍵ ←→ (⍺ f ⍵) g (⍺ h ⍵) ⍝ dyadic (fgh) fork
⍺(A g h)⍵ ←→ A g (⍺ h ⍵) ⍝ dyadic (Agh) fork
⍺(g h)⍵ ←→ g (⍺ h ⍵) ⍝ dyadic atop

(f g h)⍵ ←→ (f ⍵) g (h ⍵) ⍝ monadic (fgh) fork
(A g h)⍵ ←→ A g (h ⍵) ⍝ monadic (Agh) fork
(g h)⍵ ←→ g (h ⍵) ⍝ monadic atop

Chapter 5: Language Reference Changes 73

Identifying a Train
For a sequence to be interpreted as a train it must be separated from the argument to
which it is applied. This can be done using parentheses or by naming the derived
function.

Example - fork: negation of catenated with reciprocal of
(-,÷)5

¯5 0.2

Example - named fork
negrec←-,÷
negrec 5

¯5 0.2

Whereas, without these means to identify the sequence as a train, the expression:

-,÷ 5
¯0.2

means the negation of the ravel of the reciprocal of 5.

Idiom Recognition
Function trains lend themselves to idiom recognition, a technique used to optimise
the performance of certain expressions.

Example
An expression to find the first position in a random integer vector X of a number
greater than 999000 is:

X←?1e6⍴1e6
(X≥999000)⍳1

1704

A function train is not only more concise, it is faster too.

X (⍳∘1 ≥) 999000
1704

Chapter 5: Language Reference Changes 74

Trains of Trains
As a train resolves to a function, a sequences of more than 3 functions represents a
train of trains. Function sequences longer than 3 are bound in threes, starting from the
right:

... fu fv fw fx fy fz → ... fu (fv fw (fx fy fz))

This means that, in the absence of parentheses, a sequence of an odd number of func-
tions resolves to a 3-train (fork) and an even-numbered sequence resolves to a 2-train
(atop):

e f g h i j k → e f(g h(i j k)) ⍝ fork(fork(fork))
f g h i j k → f(g h(i j k)) ⍝ atop(fork(fork))

Examples
6(+,-,×,÷)2 ⍝ fork:(6+2),((6-2),((6×2),(6÷2)))

8 4 12 3

6(⌽+,-,×,÷)2 ⍝ atop: ⌽ (6+2), ...
3 12 4 8

]boxing on
Was OFF

+,-,×,÷ ⍝ boxed display of fork
┌─┬─┬─────────────┐
│+│,│┌─┬─┬───────┐│
│ │ ││-│,│┌─┬─┬─┐││
│ │ ││ │ ││×│,│÷│││
│ │ ││ │ │└─┴─┴─┘││
│ │ │└─┴─┴───────┘│
└─┴─┴─────────────┘

⌽+,-,×,÷ ⍝ boxed display of atop
┌─┬───────────────────┐
│⌽│┌─┬─┬─────────────┐│
│ ││+│,│┌─┬─┬───────┐││
│ ││ │ ││-│,│┌─┬─┬─┐│││
│ ││ │ ││ │ ││×│,│÷││││
│ ││ │ ││ │ │└─┴─┴─┘│││
│ ││ │ │└─┴─┴───────┘││
│ │└─┴─┴─────────────┘│
└─┴───────────────────┘

]boxing -trains=tree
Was -trains=box

+,-,×,÷ ⍝ boxed (tree) display of fork
┌─┼───┐
+ , ┌─┼───┐

- , ┌─┼─┐
× , ÷

Chapter 5: Language Reference Changes 75

Binding Strengths
The binding strength between the items of a train is less than that of operand-operator
binding. In other words, operators bind first with their function (or array) operands to
form derived functions, which may then participate as items in a train.

Example:
+⌿ ÷ ≢ ⍝ fork for mean value

┌─────┬─┬─┐
│┌─┬─┐│÷│≢│
││+│⌿││ │ │
│└─┴─┘│ │ │
└─────┴─┴─┘

⌊/,⌈/ ⍝ fork for min_max
┌─────┬─┬─────┐
│┌─┬─┐│,│┌─┬─┐│
││⌊│/││ ││⌈│/││
│└─┴─┘│ │└─┴─┘│
└─────┴─┴─────┘

This means that any of the four hybrid tokens / ⌿ \ ⍀ will not be interpreted as a
function if there's a function to its left in the train. In order to fix one of these tokens
as a replicate or expand function, it must be isolated from the function to its left:

(⍳/⍳)3 ⍝ → ⍳/ atop ⍳3 → RANK ERROR
RANK ERROR

(⍳{⍺/⍵}⍳)3 ⍝ → (⍳3){⍺/⍵}(⍳3) → (⍳3)/(⍳3)
1 2 2 3 3 3

(⍳(/∘⊢)⍳)3 ⍝ → (⍳3)/⊢(⍳3)
1 2 2 3 3 3

(2/⍳)3 ⍝ Agh-fork is OK
1 1 2 2 3 3

Chapter 5: Language Reference Changes 76

File Properties R←X ⎕FPROPS Y

Access Code 1 (to read) or 8192 (to change properties)
⎕FPROPS reports and sets the properties of a component file.

Ymust be a simple integer scalar or 1 or 2-element vector containing the file tie num-
ber followed by an optional passnumber. If the passnumber is omitted, it is assumed
to be 0.

Xmust be a simple character scalar or vector containing one or more valid Identifiers
listed in the table below, or a 2-element nested vector which specifies an Identifier
and a (new) value for that property. To set new values for more than one property, X
must be is a vector of 2-element vectors, each of which contains an Identifier and a
(new) value for that property.

If the left argument is a simple character array, the result R contains the current values
for the properties identified by X. If the left argument is nested, the result R contains
the previous values for the properties identified by X.

Identifier Property Description / Legal Values

S
File Size
(read only)

32 = Small-span Component Files (<4GB)
64 = Large-span Component Files

E
Endian-ness
(read only)

0 = Little-endian
1 = Big-endian

U Unicode 0 = Characters will be written as type 82 arrays
1 = Characters will be written as Unicode arrays

J Journaling

0 = Disable Journaling
1 = Enable APL crash proof Journaling
2 = Enable System crash proof Journaling; repair
needed on recovery
3 = Enable full System crash proof Journaling

C Checksum 0 = Disable checksum
1 = Enable checksum

Z Compression 0 = Disable compression
1 = Enable compression

Chapter 5: Language Reference Changes 77

The default properties for a newly created file are as follows:

l S = 64
l U = 1 (in Unicode Edition) or 0 (in Classic Edition)
l J = 1
l C = 1
l Z = 0
l E depends upon the computer architecture.

Note that the defaults for C and J can be overridden by calling ⎕FCREATE via the
Variant operator ⍠. For further information, see File Create on page 80.

Journaling Levels
Level 1 journaling (APL crash-proof) automatically protects a component file from
damage in the event of abnormal termination of the APL process. The file state will
be implicitly committed between updates and an incomplete update will auto-
matically be rolled forward or back when the file is re-tied. In the event of an oper-
ating system crash the file may be more seriously damaged. If checksumwas also
enabled it may be repaired using ⎕FCHK but some components may be restored to a
previous state or not restored at all.

Level 2 journaling (system crash-proof – repair needed on recovery) extends level 1
by ensuring that a component file is fully repairable using ⎕FCHK with no com-
ponent loss in the event of an operating system failure. If an update was in progress
when the system crashed the affected component will be rolled back to the previous
state. Tying and modifying such a file without first running ⎕FCHKmay however
render it un-repairable.

Level 3 journaling (system crash-proof) extends level 2 by protecting a component
file from damage in the event of abnormal termination of the APL process and also
the operating system. Rollback of an incomplete update will be automatic and no
explicit repair will be needed.

Enabling journaling on a component file will reduce performance of file updates;
higher journaling levels have a greater impact.

Journaling levels 2 and 3 cannot be set unless the checksum option is also enabled.

The default level of journaling may be changed using the APL_FCREATE_
PROPS_J parameter (see User Guide).

Chapter 5: Language Reference Changes 78

Checksum Option
The checksum option is enabled by default. This enables a damaged file to be
repaired using ⎕FCHK. It will however reduce the performance of file updates
slightly and result in larger component files. The default may be changed using the
APL_FCREATE_PROPS_C parameter (See User Guide).

Enabling the checksum option on an existing non-empty component file will result
in all previously written components without a checksum being check-summed and
converted. This operation which will take place when ⎕FPROPS is changed, may not
therefore be instantaneous.

Journaling and checksum settings may be changed at any time a file is exclusively
tied.

Example
tn←'myfile64' ⎕FCREATE 0
'SEUJ' ⎕FPROPS tn

64 0 1 0

The following expression disables Unicode and switches Journaling on. The func-
tion returns the previous settings:

('U' 0)('J' 1) ⎕FPROPS tn
1 0

Note that to set the value of just a single property, the following two statements are
equivalent:

'J' 1 ⎕FPROPS tn
(,⊂'J' 1) ⎕FPROPS tn

Properties may be read by a task with ⎕FREAD permission (access code 1), and set by
a task with ⎕FSTAC access (8192). To set the value of the Journaling property, the
file must be exclusively tied.

Recommendation
It is recommended that all component files are protected by a minimum of Level 1
Journalling and have Checksum enabled.

Unprotected files should only be used:

l for temporary work files where speed is paramount and integrity a secondary
issue

l or where compatibility with Versions of Dyalog prior to Version 12.0 is
required

Chapter 5: Language Reference Changes 79

This recommendation is given for the following reasons:

l Unprotected files are easily damaged by abnormal termination of the inter-
preter

l They cannot be repaired using ⎕FCHK
l They do not support ⎕FHIST
l They are not well supported by the Dyalog File Server (DFS)
l They do not support compression of components
l Additional features added in future may not be supported

Compression Option
Components are compressed using the LZ4 compressor which delivers a medium
level of compression, but is considered to be very fast compared to other algorithms.

Compression is intended to deliver a performance gain reading and writing large com-
ponents on fast computers with slow (e.g. network) file access. Conversely, on a slow
computer with fast file access compression may actually reduce read/write per-
formance. For this reason it is optional at the component level.

The default for the 'Z' property is 0 which means no compression; 1 means com-
pression. When written, components are compressed or not according to the current
value of the 'Z' property. Changing this property does not change any components
already in the file.

A component file may therefore contain a mixture of normal and compressed com-
ponents. Note that only the data in file components are compressed, the file access
matrix and other header information is not compressed.

When read, compressed components are decompressed regardless of the value of the
'Z' property.

An exclusive tie is not needed to change the file property.

Compression is not supported for files in which both Journalling and Checksum are
disabled.

Chapter 5: Language Reference Changes 80

File Create {R}←X ⎕FCREATE Y

Ymust be a simple integer scalar or a 1 or 2 element vector. The first element is the
file tie number. The second element, if specified, must be 641.

The file tie numbermust not be the tie number associated with another tied file.

Xmust be either

a. a simple character scalar or vector which specifies the name of the file to be
created. See User Guide for file naming conventions under UNIX and Win-
dows.

b. a vector of length 1 or 2 whose items are:

i. a simple character scalar or vector as above.
ii. an integer scalar specifying the file size limit in bytes.

The newly created file is tied for exclusive use.

The shy result of ⎕FCREATE is the tie number of the new file.

Automatic Tie Number Allocation
A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to sim-
plify code. For example:

from:

tie←1+⌈/0,⎕FNUMS ⍝ With next available number,
file ⎕FCREATE tie ⍝ ... create file.

to:

tie←file ⎕FCREATE 0 ⍝ Create with first available..

Examples
'..\BUDGET\SALES' ⎕FCREATE 2 ⍝ Windows
'../budget/SALES.85' ⎕FCREATE 2 ⍝ UNIX

'COSTS' 200000 ⎕FCREATE 4 ⍝ max size 20000
0

1This element sets the span of the file which in earlier Versions of Dyalog APL could be 32 or 64.
Small-span (32-bit) component files may no longer be created and this element is retained only for
backwards compatibility of code.

Chapter 5: Language Reference Changes 81

File Properties
⎕FCREATE allows you to specify propeties for the newly created file via the variant
operator ⍠ used with the following options:

l 'J' - journaling level; a numeric value.
l 'C' - checksum level; 0 or 1.
l 'Z' - compression; 0 or 1.

The Principal Option is neither 'J' nor 'C' - but a combination as follows:

l 0 - sets ('J' 0) ('C' 0)
l 1 - sets ('J' 1) ('C' 1)
l 2 - sets ('J' 2) ('C' 1)
l 3 - sets ('J' 3) ('C' 1)

Examples
'newfile' (⎕FCREATE⍠3) 0

1
'SEUJCZ' ⎕FPROPS 1

64 0 1 3 1 0

Alternatively:

JFCREATE←⎕FCREATE ⍠ 3

will name a variant of ⎕FCREATE which will create component file with level 3
journaling, and checksum enabled. Then:

'newfile'JFCREATE 0
1

Chapter 5: Language Reference Changes 82

File Read Components R←⎕FREAD Y

Access code 1
Y is a 2 or 3 item vector containing the file tie number, the component number(s), and
an optional passnumber. If the passnumber is omitted it is assumed to be zero. All ele-
ments of Ymust be integers.

The second item in Ymay be scalar which specifies a single component number or a
vector of component numbers. If it is a scalar, the result is the value of the array that is
stored in the specified component on the tied file. If it is a vector, the result is a vector
of such arrays.

Note that any invocation of ⎕FREAD is an atomic operation. Thus if compnos is a
vector, the statement:

⎕FREAD tie compnos passno

will return the same result as:

{⎕FREAD tie ⍵ passno}¨compnos

However, the first statement will, in the case of a share-tied file, prevent any potential
intervening file access from another user (without the need for a ⎕FHOLD). It will
also perform slightly faster, especially when reading from a share-tied file.

Examples
⍴SALES←⎕FREAD 1 241

3 2 12

GetFile←{⎕io←0 ⍝ Extract contents.
tie←⍵ ⎕fstie 0 ⍝ new tie number.
fm to←2↑⎕fsize tie ⍝ first and next component.
cnos←fm+⍳to-fm ⍝ vector of component nos.
cvec←⎕fread tie cnos ⍝ vector of components.
cvec{⍺}⎕funtie tie ⍝ ... untie and return.

}

Chapter 5: Language Reference Changes 83

File Check and Repair R←{X} ⎕FCHK Y

⎕FCHK validates and repairs component files, and validates files associated with
external variables, following an abnormal termination of the APL process or oper-
ating system.

Ymust be a simple character scalar or vector which specifies the name of the file to be
exclusively checked or repaired. For component files, the file must be named in
accordance with the operating system's conventions, and may be a relative or abso-
lute pathname. The file must exist and must not be tied. For files associated with
external variables, any filename extension must be specified even if ⎕XT would not
require it. The file must exist and must not currently be associated with an external
variable.

Options for ⎕FCHK are specified using the Variant operator ⍠ or by the optional left
argument X. The former is recommended but the older mechanism using the left argu-
ment is still supported.

In either case, the default behaviour is as follows:

1. If the file appears to have been cleanly untied previously, return ⍬, i.e.
report that the file is good.

2. Otherwise, validate the file and return the appropriate result. If the file is cor-
rupt, no attempt is made to repair it.

The result R is a vector of the numbers of missing or damaged components. Rmay
include non-positive numbers of "pseudo components" that indicate damage to parts
of the file other than in specific components:

0 ACCESS MATRIX.

¯1 Free-block tree.

¯2 Component index tree.

Other negative numbers represent damage to the file metadata; this set may be exten-
ded in the future.

Chapter 5: Language Reference Changes 84

Specifying options using Variant
Using Variant, the options are as follows:

l Task
l Repair
l Force

Rebuild causes the file indices to be discarded and rebuilt. Repair only takes place on
files which have been checked and found to be damaged. It involves a rebuild, but
that only takes place if it is needed. Note that Repair and Force only apply if Task is
'Scan'.

Task

Scan
causes the file to be checked and optionally repaired (see
'Repair' below)

Rebuild causes the file to be unconditionally rebuilt

Repair (principle option)

0 do not repair

1 causes the file to be repaired if damage is found

Force

0
do not validate the file if it appears to have been properly
closed

1 validate the file even if it appears to have been properly closed

Default values are highlighted thus in the above tables.

Examples
To check a file and attempt to fix it if damage is found:

(⎕FCHK ⍠ 1)'suspect.dcf'

To forcibly check a file and attempt to fix it if damage is found:

(⎕FCHK ⍠ ('Repair' 1)('Force'1))'suspect.dcf'

Chapter 5: Language Reference Changes 85

Specifying options using a left argument
Using the optional left-argument, Xmust be a vector of zero or more character vectors
from among 'force', 'repair' and 'rebuild', which determine the detailed
operation of the function. Note that these options are case-insensitive.

l If X contains 'force', ⎕FCHK will validate the file even if it appears to
have been cleanly untied.

l If X contains 'repair', ⎕FCHK will repair the file, following validation,
if it appears to be damaged. This option may be used in conjunction with
'force'.

l If X contains 'rebuild', ⎕FCHK will repair the file unconditionally.

Following a check of the file, a non-null result indicates that the file is damaged.

Following a repair of the file, the result indicates those components that could not be
recovered. Un-recovered components will give a FILE COMPONENT DAMAGED
error if read but may be replaced without error.

Repair can recover only check-summed components from the file, i.e. only those com-
ponents that were written with the checksum option enabled (see File Properties on
page 76).

Following an operating system crash, repair may result in one or more individual com-
ponents being rolled back to a previous version or not recovered at all, unless Journ-
aling levels 2 or 3 were also set when these components were written.

Chapter 5: Language Reference Changes 86

XML Convert R←{X} ⎕XML Y

⎕XML converts an XML string into an APL array or converts an APL array into an
XML string.

Options for ⎕XML are specified using the Variant operator ⍠ or by the optional left
argument X. The former is recommended but the older mechanism using the left argu-
ment is still supported.

For conversion from XML, Y is a character vector containing an XML string. The res-
ult R is a 5 column matrix whose columns are made up as follows:

Column Description

1 Numeric value which indicates the level of nesting

2 Element name, other markup text, or empty character vector when
empty

3 Character data or empty character vector when empty

4 Attribute name and value pairs, (0 2⍴⊂'') when empty

5 A numeric value which indicates what the row contains

The values in column 5 have the following meanings:

Value Description

1 Element

2 Child element

4 Character data

8 Markup not otherwise defined

16 Comment markup

32 Processing instruction markup

Chapter 5: Language Reference Changes 87

Example
x←'<xml><document id="001">An introduction to XML'
x,←'</document></xml>'

]display v←⎕XML x
┌→───┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→───────┐ ┌→─────────────────────┐ ┌→───────────┐ │
│ 1 │document│ │An introduction to XML│ ↓ ┌→─┐ ┌→──┐ │ 5 │
│ └────────┘ └──────────────────────┘ │ │id│ │001│ │ │
│ │ └──┘ └───┘ │ │
│ └∊───────────┘ │
└∊───┘

For conversion to XML, Y is a 3, 4 or 5 column matrix and the result R is a character
vector. The columns of Y have the same meaning as those described above for the res-
ult of converting from XML.

Example
⎕XML v

<xml>
<document id="001">An introduction to XML</document>

</xml>

Chapter 5: Language Reference Changes 88

Introduction to XML and Glossary of Terms
XML is an open standard, designed to allow exchange of data between applications.
The full specification 1 describes functionality, including processing directives and
other directives, which can transform XML data as it is read, and which a full XML
processor would be expected to handle.

The ⎕XML function is designed to handle XML to the extent required to import and
export APL data. It favours speed over complexity - some markup is tolerated but
largely ignored, and there are no XML query or validation features. APL applications
which require processing, querying or validation will need to call external tools for
this, and finally call ⎕XML on the resulting XML to perform the transformation into
APL arrays.

XML grammar such as processing instructions, document type declarations etc. may
optionally be stored in the APL array, but will not be processed or validated. This is
principally to allow regeneration of XML fromXML input which contains such struc-
tures, but an APL application could process the data if it chose to do so.

The XML definition uses specific terminology to describe its component parts. The
following is a summary of the terms used in this section:

Character Data
Character data consists of free-form text. The free-form text should not include the
characters ‘>’, ‘<’ or ‘&’, so these must be represented by their entity references
(‘>’, ‘<’ and ‘&’ respectively), or numeric character references.

Entity References and Character References
Entity references are named representations of single characters which cannot nor-
mally be used in character data because they are used to delimit markup, such as >
for ‘>’. Character references are numeric representations of any character, such as
 for space. Note that character references always take values in the Unicode
code space, regardless of the encoding of the XML text itself.

⎕XML converts entity references and all character references which the APL character
set is able to represent into their character equivalent when generating APL array
data; when generating XML it converts any or all characters to entity references as
needed.

There is a predefined set of entity references, and the XML specification allows oth-
ers to be defined within the XML using the <!ENTITY >markup. ⎕XML does not
process these additional declarations and therefore will only convert the predefined
types.

1http://www.w3.org/TR/2008/REC-xml-20081126/

http://www.w3.org/TR/2008/REC-xml-20081126/

Chapter 5: Language Reference Changes 89

Whitespace
Whitespace sequences consist of one or more spaces, tabs or line-endings. Within
character data, sequences of one or more whitespace characters are replaced with a
single space when this is enabled by the whitespace option. Line endings are rep-
resented differently on different systems (0x0D 0x0A, 0x0A and 0x0D are all used)
but are normalized by converting them all to 0x0A before the XML is parsed, regard-
less of the setting of the whitespace option.

Elements
An element consists of a balanced pair of tags or a single empty element tag. Tags are
given names, and start and end tag names must match.

An example pair of tags, named TagName is

<TagName></TagName>

This pair is shown with no content between the tags; this may be abbreviated as an
empty element tag as

<TagName/>

Tags may be given zero or more attributes, which are specified as name/value pairs;
for example

<TagName AttName=”AttValue”>

Attribute values may be delimited by either double quotes as shown or single quotes
(apostrophes); they may not contain certain characters (the delimiting quote, ‘&’ or
‘<’) and these must be represented by entity or character references.

The content of elements may be zero or more mixed occurrences of character data and
nested elements. Tags and attribute names describe data, attribute values and the con-
tent within tags contain the data itself. Nesting of elements allows structure to be
defined.

Because certain markup which describes the format of allowable data (such as ele-
ment type declarations and attribute-list declarations) is not processed, no error will
be reported if element contents and attributes do not conform to their restricted declar-
ations, nor are attributes automatically added to tags if not explicitly given.

Chapter 5: Language Reference Changes 90

Attributes with names beginning xml: are reserved. Only xml:space is treated spe-
cially by ⎕XML. When converting both from and to XML, the value for this attribute
has the following effects on space normalization for the character data within this ele-
ment and child elements within it (unless subsequently overridden):

l default – space normalization is as determined by the whitespace option.
l preserve - space normalization is disabled – all whitespace is preserved as

given.
l any other value – rejected.

Regardless of whether the attribute name and value have a recognised meaning, the
attribute will be included in the APL array / generated XML. Note that when the
names and values of attributes are examined, the comparisons are case-sensitive and
take place after entity references and character references have been expanded.

Comments
Comments are fully supported markup. They are delimited by ‘<!--‘ and ‘-->’ and all
text between these delimiters is ignored. This text is included in the APL array if
markup is being preserved, or discarded otherwise.

CDATA Sections
CDATA Sections are fully supported markup. They are used to delimit text within
character data which has, or may have, markup text in it which is not to be processed
as such. They and are delimited by ‘<![CDATA[‘ and ‘]]>’. CDATA sections are
never recorded in the APL array as markup when XML is processed – instead, that
data appears as character data. Note that this means that if you convert XML to an
APL array and then convert this back to XML, CDATA sections will not be regen-
erated. It is, however, possible to generate CDATA sections in XML by presenting
them as markup.

Processing Instructions
Processing Instructions are delimited by ‘<&’ and ‘&>’ but are otherwise treated as
other markup, below.

Chapter 5: Language Reference Changes 91

Other markup
The remainder of XMLmarkup, including document type declarations, XML declar-
ations and text declarations are all delimited by ‘<!’ and ‘>’, and may contain nested
markup. If markup is being preserved the text, including nested markup, will appear
as a single row in the APL array. ⎕XML does not process the contents of such
markup. This has varying effects, including but not limited to the following:

l No validation is performed.
l Constraints specified in markup such element type declarations will be

ignored and therefore syntactically correct elements which fall outside their
constraint will not be rejected.

l Default attributes in attribute-list declarations will not be automatically
added to elements.

l Conditional sections will always be ignored.
l Only standard, predefined, entity references will be recognized; entity declar-

ations which define others entity references will have no effect.
l External entities are not processed.

Conversion from XML
l The level number in the first column of the result R is 0 for the outermost

level and subsequent levels are represented by an increase of 1 for each
level. Thus, for

l <xml><document id="001">An introduction to XML </document></xml>
l The xml element is at level 0 and the document id element is at level 1. The

text within the document id element is at level 2.
l Each tag in the XML contains an element name and zero or more attribute

name and value pairs, delimited by ‘<’ and ‘>’ characters. The delimiters are
not included in the result matrix. The element name of a tag is stored in
column 2 and the attribute(s) in column 4.

l All XML markup other than tags are delimited by either ‘<!’ and ‘>’, or ‘<?’
and ‘>’ characters. By default these are not stored in the result matrix but
the markup option may be used to specify that they are. The elements are
stored in their entirety, except for the leading and trailing ‘<’ and ‘>’ char-
acters, in column 2. Nested constructs are treated as a single block. Because
the leading and trailing ‘<’ and ‘>’ characters are stripped, such entries will
always have either ‘!’ or ‘&’ as the first character.

l Character data itself has no tag name or attributes. As an optimisation, when
character data is the sole content of an element, it is included with its parent
rather than as a separate row in the result. Note that when this happens, the
level number stored is that of the parent; the data itself implicitly has a
level number one greater.

Chapter 5: Language Reference Changes 92

l Attribute name and value pairs associated with the element name are stored
in the fourth column, in an (n x 2) matrix of character values, for the n
(including zero) pairs.

l Each row is further described in the fifth column as a convenience to sim-
plify processing of the array (although this information could be deduced).
Any given row may contain an entry for an element, character data, markup
not otherwise defined, a comment or a processing instruction. Furthermore,
an element will have zero or more of these as children. For all types except
elements, the value in the fifth column is as shown above. For elements, the
value is computed by adding together the value of the row itself (1) and
those of its children. For example, the value for a row for an element which
contains one or more sub-elements and character data is 7 – that is 1 (ele-
ment) + 2 (child element) + 4 (character data). It should be noted that:

l Odd values always represent elements. Odd values other than 1 indicate that
there are children.

l Elements which contain just character data (5) are combined into a single
row as noted previously.

l Only immediate children are considered when computing the value. For
example, an element which contains a sub-element which in turn contains
character data does not itself contain the character data.

l The computed value is derived from what is actually preserved in the array.
For example, if the source XML contains an element which contains a com-
ment, but comments are being discarded, there will be no entry for the com-
ment in the array and the fifth column for the element will not indicate that
it has a child comment.

Conversion to XML
Conversion to XML takes an array with the format described above and generates
XML text from it. There are some simplifications to the array which are accepted:

l The fifth column is not needed for XML generation and is effectively
ignored. Any numeric values are accepted, or the column may be omitted
altogether.

l If there are no attributes in a particular row then the (0 2⍴⊂'') may be
abbreviated as ⍬ (zilde). If the fifth column is omitted then the fourth
column may also be omitted altogether.

l Data in the third column and attribute values in the fourth column (if
present) may be provided as either character vectors or numeric values.
Numeric values are implicitly formatted as if ⎕PP was set to 17.

Chapter 5: Language Reference Changes 93

The following validations are performed on the data in the array:

l All elements within the array are checked for type.
l Values in column 1 must be non-negative and start from level 0, and the

increment from one row to the next must be ≤ +1.
l Tag names in column 2 and attribute names in column 4 (if present) must

conform to the XML name definition.

Then, character references and entity references are emitted in place of characters
where necessary, to ensure that valid XML is generated. However, markup, if present,
is not validated and it is possible to generate invalid XML if care in not taken with
markup constructs.

Options
There are 3 options which may be specified using the Variant operator ⍠ (recom-
mended) or by the optional left argument X (retained for backwards compatibility).
The names are different and are case-sensitive; they must be spelled exactly as shown
below.

Option names for Variant Option names for left argument

Whitespace whitespace

Markup markup

UnknownEntity unknown-entity

The values of each option are tabulated below. In each case the value of the option
for Variant is given first, followed by its equivalent for the optional left argument in
brackets; e.g.UnknownEntity (unknown-entity).

Note that the default value is shown first, and that the option names and values are
case-sensitive.

If options are specified using the optional left argument, X specifies a set of option/-
value pairs, each of which is a character vector. Xmay be a 2-element vector, or a vec-
tor of 2-element character vectors. In the examples below, this method is illustrated
by the equivalent expression written as a comment, following the recommended
approach using the Variant operator ⍠. i.e.

]display (⎕XML⍠'Whitespace' 'Strip')eg
⍝ 'whitespace' 'strip' ⎕XML eg

Errors detected in the input arrays or options will all cause DOMAIN ERROR.

Chapter 5: Language Reference Changes 94

Whitespace (whitespace)
When converting fromXML Whitespace specifies the default handling of white
space surrounding and within character data. When converting to XML
Whitespace specifies the default formatting of the XML. Note that attribute values
are not comprised of character data so white space in attribute values is always pre-
served.

Converting from XML

Strip
(strip)

All leading and trailing whitespace sequences are removed;
remaining whitespace sequences are replaced by a single
space character

Trim
(trim)

All leading and trailing whitespace sequences are removed;
all remaining white space sequences are handled as preserve

Preserve
(preserve)

Whitespace is preserved as given except that line endings are
represented by Linefeed (⎕UCS 10)

Converting to XML

Strip
(strip)

All leading and trailing whitespace sequences are removed;
remaining whitespace sequences within the data are replaced
by a single space character. XML is generated with
formatting and indentation to show the data structure

Trim
(trim)

Synonymous with strip

Preserve
(preserve)

White space in the data is preserved as given, except that line
endings are represented by Linefeed (⎕UCS 10). XML is
generated with no formatting and indentation other than that
which is contained within the data

Chapter 5: Language Reference Changes 95

]display eg
┌→───────────────────┐
│<xml> │
│ <a> │
│ Data1 │
│ <!-- Comment -->│
│ Data2 │
│ Data3 │
│ Data4 │
│ <c att="val"/> │
│ │
│</xml> │
└────────────────────┘

]display (⎕XML⍠'Whitespace' 'Strip')eg
⍝ 'whitespace' 'strip' ⎕XML eg

┌→──┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────┐ │
│ 1 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 7 │
│ └─┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→──────────┐ ┌→────────┐ │
│ 2 │ │ │Data1 Data2│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └───────────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 2 │b│ │Data3│ ⌽ ┌⊖┐ ┌⊖┐ │ 5 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data4│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 2 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 1 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
└∊──┘

Chapter 5: Language Reference Changes 96

]display (⎕XML⍠'Whitespace' 'Preserve')eg
⍝ 'whitespace' 'preserve' ⎕XML eg

┌→──────────────────────────────────────┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 7 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→─┐ ┌→────────┐ │
│ 1 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ │ │ │ │ │ │ │ │
│ └──┘ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────┐ │
│ 1 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 7 │
│ └─┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────────┐ ┌→────────┐ │
│ 2 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ Data1│ │ │ │ │ │ │ │
│ │ │ │ └─┘ └─┘ │ │
│ │ Data2│ └∊────────┘ │
│ │ │ │
│ └─────────┘ │
│ ┌→┐ ┌→──────┐ ┌→────────┐ │
│ 2 │b│ │ Data3 │ ⌽ ┌⊖┐ ┌⊖┐ │ 5 │
│ └─┘ └───────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────────┐ ┌→────────┐ │
│ 2 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ Data4│ │ │ │ │ │ │ │
│ │ │ │ └─┘ └─┘ │ │
│ └─────────┘ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 2 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 1 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
│ ┌⊖┐ ┌→─┐ ┌→────────┐ │
│ 2 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ │ │ │ │ │ │ │ │
│ └──┘ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→┐ ┌→────────┐ │
│ 1 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ │ │ │ │ │ │ │ │
│ └─┘ │ └─┘ └─┘ │ │
│ └∊────────┘ │
└∊──────────────────────────────────────┘

Chapter 5: Language Reference Changes 97

Markup (markup)
When converting fromXML, Markup determines whether markup (other than entity
tags) appears in the output array or not. When converting to XML Markup has no
effect.

Converting from XML

Strip
(strip)

Markup data is not included in the output array

Preserve
(preserve)

Markup text appears in the output array, without the leading
‘<’ and trailing ‘>’ in the tag (2nd) column

]display eg
┌→───────────────────┐
│<xml> │
│ <a> │
│ Data1 │
│ <!-- Comment -->│
│ Data2 │
│ Data3 │
│ Data4 │
│ <c att="val"/> │
│ │
│</xml> │
└────────────────────┘

Chapter 5: Language Reference Changes 98

]display (⎕XML⍠'Markup' 'Strip')eg
⍝ 'markup' 'strip' ⎕XML eg

┌→──┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────┐ │
│ 1 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 7 │
│ └─┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→──────────┐ ┌→────────┐ │
│ 2 │ │ │Data1 Data2│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └───────────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 2 │b│ │Data3│ ⌽ ┌⊖┐ ┌⊖┐ │ 5 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data4│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 2 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 1 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
└∊──┘

Chapter 5: Language Reference Changes 99

]display (⎕XML⍠'Markup' 'Preserve')eg
⍝ 'markup' 'preserve' ⎕XML eg

┌→──┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────┐ │
│ 1 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 23 │
│ └─┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data1│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→─────────────┐ ┌⊖┐ ┌→────────┐ │
│ 2 │!-- Comment --│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 16 │
│ └──────────────┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data2│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 2 │b│ │Data3│ ⌽ ┌⊖┐ ┌⊖┐ │ 5 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data4│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 2 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 1 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
└∊──┘

Chapter 5: Language Reference Changes 100

UnknownEntity (unknown-entity)
When converting fromXML, this option determines what happens when an
unknown entity reference, or a character reference for a Unicode character which can-
not be represented as an APL character, is encountered. In Classic versions of Dyalog
APL that is any Unicode character which does not appear in ⎕AVU. When converting
to XML, this option determines what happens to Esc characters (⎕UCS 27) in data.

Converting from XML

Replace
(replace)

The reference is replaced by a single ‘?’ character

Preserve
(preserve)

The reference is included in the output data as given, but
with the leading ‘&’ replaced by Esc (⎕UCS 27)

Converting to XML

Replace
(replace)

Esc (⎕UCS 27) is preserved

Preserve
(preserve)

Esc (⎕UCS 27) is replaced by ‘&’

Roll R←?Y

Ymay be any non-negative integer array. R has the same shape as Y at each depth.

For each positive element of Y the corresponding element of R is an integer, pseudo-
randomly selected from the integers ⍳Y with each integer in this population having
an equal chance of being selected.

For each zero element of Y, the corresponding element of R is a pseudo-random float-
ing-point value in the range 0 - 1, but excluding 0 and 1, i.e. (0<R[I]<1).

⎕IO and ⎕RL are implicit arguments of Roll. A side effect of Roll is to change the
value of ⎕RL.

Note that different random number generators are available; see 16807⌶ for more
information.

Examples
?9 9 9

2 7 5
?3⍴0

0.3205466592 0.3772891947 0.5456603511

Chapter 6: I-Beam Reference Changes 101

Chapter 6:

I-Beam Reference Changes

Summary
In the following tables, A is an integer that specifies the type of operation to be per-
formed.

I-Beam functionality removed fromVersion 14.0.

A Derived Function

685 UNIX only: core to aplcore

I-Beam functionality extended in Version 14.0.

A Derived Function

1111 Number of Threads/Virtual Processors

I-Beam functionality added to Version 14.0.

A Derived Function

8 Inverted Table Index-of

181 Unsqueezed Type

219 Compress/Decompress Vector of Short Integers

220 Serialise/Deserialise Array

1159 Update Function Time and User Stamp

2002 Specify Workspace Available

Chapter 6: I-Beam Reference Changes 102

A Derived Function

2015 Data Binding

2022 Flush Session Caption

2023 Close all Windows

2400 Set Workspace Save Options

2401 Expose Root Properties

Chapter 6: I-Beam Reference Changes 103

Inverted Table Index Of R←X(8⌶)Y

This function computes X index-of Y (viz. X⍳Y) where X and Y are compatible inver-
ted tables. R is the indices of Y in X.

An inverted table is a (nested) vector all of whose items have the same number of
major cells. That is, 1=⍴⍴⍵ and (≢⊃⍵)=≢¨⍵. An inverted table representation of
relational data is more efficient in time and space than other representations.

The following is an example of an inverted table:

X←(10 3⍴⎕a) (⍳10) 'metalepsis'
X

┌───┬───────────────────┬──────────┐
│ABC│0 1 2 3 4 5 6 7 8 9│metalepsis│
│DEF│ │ │
│GHI│ │ │
│JKL│ │ │
│MNO│ │ │
│PQR│ │ │
│STU│ │ │
│VWX│ │ │
│YZA│ │ │
│BCD│ │ │
└───┴───────────────────┴──────────┘

Using inverted tables, it is often necessary to perform a table look-up to find the
"row" indices of one in another. Suppose there is a second table Y:

Y←(⊂⊂3 1 4 1 5 9)⌷¨X
Y

GHI 3 1 4 1 5 9 tmamli
ABC
JKL
ABC
MNO
YZA

To compute the indices of Y in X using dyadic ⍳, it is necessary to first un-invert each
of the tables in order to create nested matrices that ⍳ can handle.

Chapter 6: I-Beam Reference Changes 104

unvert ← {⍉↑⊂⍤¯1¨⍵}
unvert X

┌───┬─┬─┐
│ABC│0│m│
├───┼─┼─┤
│DEF│1│e│
├───┼─┼─┤
│GHI│2│t│
├───┼─┼─┤
│JKL│3│a│
├───┼─┼─┤
│MNO│4│l│
├───┼─┼─┤
│PQR│5│e│
├───┼─┼─┤
│STU│6│p│
├───┼─┼─┤
│VWX│7│s│
├───┼─┼─┤
│YZA│8│i│
├───┼─┼─┤
│BCD│9│s│
└───┴─┴─┘

(unvert X) ⍳ (unvert Y)
3 1 4 1 5 9

Each un-inverted table requires considerably more workspace than its inverted form,
so if the inverted tables are large, this operation is potentially expensive in terms of
both time and workspace.

8⌶ is an optimised version of the above expression.

X (8⌶) Y
3 1 4 1 5 9

Chapter 6: I-Beam Reference Changes 105

Unsqueezed Type R←181⌶Y

Y is any array.

The result R is an integer scalar containing an integer value which indicates the type
of the array.

181⌶ is functionally identical to monadic ⎕DR, except that no attempt is made to
squeeze the data into smaller data types. ⎕DR always attempts to squeeze the data;
181⌶ does not, but if a workspace compaction occurs during execution of 181⌶, the
data may still be squeezed before the type is identified.

Example
⎕dr 1↑1 1000

11
(181⌶) 1↑1 1000

163

Chapter 6: I-Beam Reference Changes 106

Compress Vector of Short Integers R←X(219⌶)Y

In this section, the term sint_vector is used to refer to a simple integer vector whose
items are all in the range ¯128 to 127 i.e. they are type 83.

In most cases this I-Beam functionality will be used in conjunction with 220⌶ (Seri-
alise/Deserialise Array). However, it may be possible to pass the raw compressed data
to and from other applications.

X specifies the operation to be performed, either compression or decompression, the
compression library to be used, and any optional parameters. Y contains the data to
be operated on.

Compression
Ymust be a sint_vector.

R is a two item vector, each of which is a sint_vector. R[1] describes the com-
pression, and R[2] contains the raw data which is the result of applying the com-
pression library to the input data Y.

X is specified as follows:

X[1] X[2] Compression Library

1 n/a LZ4

2 0 .. 9 zlib

3 0 .. 9 gzip

If LZ4 compression is required, then Xmust either be a scalar or a one element vector.
Otherwise, X[2], if present, specifies the compression level; higher numbers produce
better compression, but take longer.

Decompression
R is a sint_vector, containing the output of applying the decompression library to the
input data, Y.

If X is a scalar or a one item vector, and has the value 0, then Ymust be a vector of
two items which is the result of previously calling 219⌶ to compress a sint_vector.

Chapter 6: I-Beam Reference Changes 107

Otherwise, X is a scalar or one or two element vector. The first element of Xmust be
one of the following values.

X[1] Compression Library

¯1 LZ4

¯2 zlib

¯3 gzip

The second, optional, element of X specifies the length of the uncompressed data. Its
presence results in a more efficient use of the compression library.

Xmay not be a two item vector whose first item has the value 0.

Examples
sint←{⍵-256×⍵>127}
utf8←'UTF-8'∘⎕ucs
str←'empty←⍬'
⊣v←sint utf8 str

101 109 112 116 121 ¯30 ¯122 ¯112 ¯30 ¯115 ¯84
⊣comp←1 (219⌶) v

8 ¯55 1 0 0 0 0 11 ¯80 101 109 112 116 121 ¯30 ¯122 ¯112
¯30 ¯115 ¯84

utf8 256| 0(219⌶)comp
empty←⍬

utf8 256| ¯1(219⌶)2⊃comp
empty←⍬

Chapter 6: I-Beam Reference Changes 108

Serialise/Deserialise Array R←X(220⌶)Y

In this section, the term sint_vector is used to refer to a simple integer vector whose
items are all in the range ¯128 to 127 i.e. they are type 83.

It is expected that in many cases this I-Beam functionality will be used in con-
junction with 219⌶ - Compress/Decompress vector of short integers. It would also be
possible to encrypt the serialised form and write to a file (either component or nat-
ive), and reverse the process at a later date.

X is a scalar which can take the value 0 or 1.

When X is 1, Y can be any array. The result R is the serialised form of the array, presen-
ted as a sint_vector.

When X is 0, Ymust be a sint_vector. The result R is an array whose serialised form is
represented by Y.

Typically it is not possible to construct a vector which can be deserialised; it is expec-
ted that the only source of a vector which can be deserialised is the result of using 1
(220⌶) to serialise an array.

The result of 1(220⌶) will differ between interpreters of differing widths and edi-
tions, but the resulting vector can be deserialised in other interpreters, with the excep-
tion that, like arrays in component files, it may not be possible to deserialise an array
which was serialised in a later interpreter

The following identity holds true:

A≡ 0(220⌶) 0(219⌶) 1(219⌶) 1(220⌶) A

Example
a←'ab'
b←1(220⌶)a
b

¯33 ¯108 5 0 0 0 31 39 0 0 2 0 0 0 97 98 0 0
c←0(220⌶)b
c≡a

1

Chapter 6: I-Beam Reference Changes 109

Number of Threads R←1111⌶Y

Specifies how many threads are to be used for parallel execution.

If Y has the value ⍬, R is the number of virtual processors in the machine.

Otherwise, Y is an integer that specifies the number of threads that are to be used
henceforth for parallel execution. Prior to this call, the default number of threads is
specified by the environment variable APL_MAX_THREADS. If this variable is not
set, the default is the number of virtual processors that the machine is configured to
have.

R is the previous value.

To reset the number of threads to be the same as the number of virtual processors run:

{}1111⌶ 1111⌶⍬

Chapter 6: I-Beam Reference Changes 110

Update Function Time Stamp {R}←X(1159⌶)Y

Y is an array of function names in the same format as the right argument of ⎕AT. For
further information, see .

X is an array of function attributes in the same format as the output of ⎕AT.

The shy result R is a vector of numeric items, one per each specified function con-
taining the following values:

0
No change was made; the name is not that of a function, or the function
was locked

1 The time and user stamp were updated

Note that the last item of the function time stamp must be set to 0 otherwise 1159 ⌶
will generate a DOMAIN ERROR. Additionally, the time stamp must be greater than
1970 1 1 0 0 0 0.

Example
]disp ⎕AT'Christmas'

┌→────┬───────────────────┬─┬───────┐
│0 0 0│2013 3 1 11 14 58 0│0│Richard│
└~───→┴~─────────────────→┴─┴───────┘

x←⎕AT 'Christmas'
x[2 4]←(2012 12 25 11 59 0 0)('Santa')
x (1159⌶) 'Christmas'

]disp ⎕AT'Christmas'
┌→────┬────────────────────┬─┬─────┐
│0 0 0│2012 12 25 11 59 0 0│0│Santa│
└~───→┴~──────────────────→┴─┴────→┘3

Chapter 6: I-Beam Reference Changes 111

Specify Workspace Available R←2002⌶Y

This function is identical to the system function ⎕WA except that it provides the
means to specify the amount of memory 1 that is committed for the workspace rather
than have it assigned by the internal algorithm. Committed memory is memory that is
allocated to a specific process and thereby reduces the amount of memory available
for other applications.

Like ⎕WA, 2002⌶ compacts the workspace so that it occupies the minimum number
of bytes possible, adds an extra amount, and then de-commits all the remaining
memory that it is currently using, allowing it to be allocated by the operating system
for use by other applications.

The argument Y is an integer which specifies the size, in bytes, of this extra amount.

The purpose of the extra amount is to reduce the likelihood that APL will imme-
diately have to ask the operating system to re-commit memory that it has just de-com-
mitted, something that would have a deleterious effect on performance. At the same
time, if the extra amount were to be excessively large, APL could starve other applic-
ations of memory which itself could reduce the effective performance of the system.
Whereas ⎕WA calculates the size of the extra amount using a simple internal
algorithm, 2002⌶ uses a value specified by the programmer.

R is an integer which reports the size in bytes of the memory committed for the work-
space, and is the sum of the minimum amount required by the workspace itself and
the argument Y.

If the size of the committed workspace would be smaller than the minimum value
(specified by 2000⌶) or larger than the maximum value (which defaults to MAXWS), a
DOMAIN ERROR is signalled.

Note that this function does not change the size of the extra amount that will be
applied subsequently by ⎕WA or by an automatic compaction.

1The term memory here means virtual memory which includes memory mapped to disk.

Chapter 6: I-Beam Reference Changes 112

Data Binding R←{X}2015⌶Y

Creates an object that may be used as a data source forWPF data binding. 1

Data binding connects a Binding Target to a Binding Source. In WPF a Binding Tar-
get is a particular property of a user interface object; for example, the Text property
of a TextBox object. A Binding Source is a Path to a value in a data object (which
may contain other values). The value of the Binding Source determines the value of
the Binding Target. If two-way binding is in place, a change in a user-interface com-
ponent causes the bound data value to change accordingly. In the example of the
TextBox, the value in the Binding Source changes as the user types into the
TextBox.

Y is a character vector containing one of the following:

l the name of a variable
l the name of a namespace containing one or more variables
l the name of a variable containing a vector of refs to namespaces, each of

which contains one or more variables.

If the name specified by Y doesn't exist or represents neither a variable nor a
namespace, the function reports DOMAIN ERROR. Currently, no further validation of
the structure and contents of Y is performed, but nothing other than the examples
described herein is supported.

If the optional left argument X is given and Y is a variable other than a ref, X specifies
the binding type for that variable. If Y specifies one or more namespaces, X specifies
the names and binding types of each of the variables which are to be bound, con-
tained in the namespaces specified by Y.

The structure of X depends upon the structure of Y and is discussed later in this topic.

If X is omitted, all of the variables specified by Y are bound with default binding
types.

Here the term bind variable refers to any variable specified by X and Y to be bound,
and the term binding typemeans the .NET data type to which the value of the bind
variable is converted before it is passed to the .NET interface.

1It is beyond the scope of this document to fully explain the concepts of WPF data binding. See
Microsoft Developer Network, Data Binding Overview.

Chapter 6: I-Beam Reference Changes 113

2015⌶ creates a Binding Source object R. This is a .NET object which contains Path
(s) to one or more bind variables. This object may then be assigned to a property of a
WPF object or passed a s as a parameter to a WPFmethod that requires a Binding
Source.

Bind Variables and Bind Types
A bind variable should be of rank 2 or less. Higher rank arrays are not supported.

If not specified by X, the binding type of a bind variable is derived from its content at
the time 2015⌶ is executed. The binding type is then stored with the variable in the
workspace. There is no mechanism to change a variable's binding type without eras-
ing the variable and re-executing 2015⌶. If you change the type or rank of a bind
variable while it is bound (for example from a variable to a namespace), the beha-
viour of the system is unpredictable.

The default binding type is derived as follow:

If the bind variable is a simple scalar number the default binding type is
System.Object. At the point when the value of the variable is passed to the .NET
interface this will be cast to a numeric type such as System.Int16,
System.Int32, System.Int64, or System.Double, depending upon the
internal representation of the data. The .NET property to which it is bound will typ-
ically only accept a single Type (for example System.Int32), so to avoid unpre-
dictable behaviour, it is recommended that the left argument X be used to specify the
binding type for numeric data.

If the bind variable is a character scalar or vector, the default binding type is also
System.Object, but at the point when the value of the variable is passed to the
.NET interface it will always be passed as System.String, which is suitable for
binding to any property that accepts a System.String, such as the Text property
of a TextBox.

If the bind variable is a vector other than a simple character vector, such as a vector of
character vectors, a simple numeric vector, or a vector of .NET objects, the bind type
will be a collection. This is suitable for binding to any property that represents a col-
lection (list) of items, for example the ItemsSource property of a ListBox.

If the bind variable is a matrix, the default binding type is System.Object. It is
likely that in a future release a rank-2 array will be bound as a DataTable.

All the examples that follow assume ⎕USING←'System'.

Chapter 6: I-Beam Reference Changes 114

Binding Single Variables
In this case, Y specifies the name of a variable which is one of the following:

l character vector (or scalar)
l numeric scalar
l scalar .NET object (not currently supported)
l vector of character vectors
l numeric vector
l vector of .NET objects
l matrix (not currently supported)

X (if specified) defines the binding type for the bind variable named by Y and is a
single .NET Type.

Note that in the following examples, the reason for expunging the name first is dis-
cussed in the section headed Rebinding a Variable.

Binding a Character Vector
This example illustrates how to bind a variable which contains a character vector.

⎕EX'txtSource'
txtSource←HELLO WORLD'
bindsource←2015⌶'txtSource'

In this example, the binding type of the variable txtSource will be
System.String, suitable for binding to any property that accepts a String, such as
the Text property of a TextBox.

Binding a Numeric Scalar
This example illustrates how to bind a variable which contains a numeric scalar
value.

⎕EX'sizeSource'
sizeSource←36
bindSource←Int32(2015⌶)'sizeSource'

In this example, the left argument Int32 specifies that the binding type for the vari-
able sizeSource is to be System.Int32. This means that whenever APL passes the
value of sizeSource to the control, it will first be cast to an Int32. This makes it
suitable, for example, for binding to the FontSize property of a TextBox.

Chapter 6: I-Beam Reference Changes 115

A number of controls have a Value property which must be expressed as a
System.Double. The next example shows how to create a Binding Source for
such a variable.

⎕EX'valSource'
valSource←42
bindSource←Double(2015⌶)'valSource'

Binding a Scalar .NET Object
This is not supported in the first release of Version 14.0. It is intended that it will be
added in due course.

Binding a Vector of Character Vectors
WPF data binding provides the means to bind controls that display lists of items,
such as the ListBox, ListView, and TreeView controls, to collections of data.
These controls are all based upon the ItemsControl class. To bind an
ItemsControl to a collection object, you use its ItemsSource property.

This example illustrates how to bind a variable which contains a vector of character
vectors.

⎕EX'itemsSource'
itemsSource←'beer' 'wine' 'water'
bindsource←2015⌶'itemsSource'

In this example, the binding type of the variable itemsSource will be
System.Collection, suitable for binding to the ItemSource property of an
ItemsControl.

Binding a Numeric Vector
By default, a numeric vector is bound in the same way as a vector of character vec-
tors, i.e. as a System.Collection, suitable for binding to the ItemSource prop-
erty of an ItemsControl.

⎕EX'yearsSource'
yearsSource←2000+⍳20
bindSource←2015⌶'yearsSource'

In principle, a numeric vector may alternatively be bound to a WPF property that
requires a 1-dimensional numeric array, by specifying the appropriate data type (e.g.
Int32, Double) for the array as the left argument. For example:

⎕EX'arraySource'
arraySource←42 24
bindSource←Int32 (2015⌶)'arraySource'

Chapter 6: I-Beam Reference Changes 116

Binding a Vector of .NET Objects
A vector of .NET objects is bound in the same way as a vector of character vectors,
i.e. as a System.Collection, suitable for binding to the ItemSource property
of an ItemsControl.

↑Easter
2015 4 12
2016 5 1
2017 4 16
2018 4 8
2019 4 28
2020 4 19
2021 5 2
2022 4 24
2023 4 16
2024 5 5

dt←{⎕NEW DateTime ⍵}¨Easter
bindSource←2015⌶'dt'

Binding a Matrix
Currently, the system allows a bind variable to contain a matrix (simple or nested)
but the default binding type is System.Object. This is unlikely to be of any use.
It is intended that in a future release of Dyalog APL a matrix will be bound as a
DataTable or similar.

Rebinding a Variable
As mentioned earlier, when a variable is bound its binding type is stored with it in
the workspace. If you subsequently attempt to rebind the variable there is no mech-
anism in place to alter the binding type. If the current binding type (whether spe-
cified by the left argument X, or by being the default) differs from the saved one, the
function will generate a DOMAIN ERROR.

num←42
bs←2015⌶'num'

bs←'Int32'(2015⌶)'num'
DOMAIN ERROR: You cannot redefine the binding types

bs←'Int32'(2015⌶)'num'
∧

In this example, perhaps the programmer realised after binding num (with a default
binding type of System.Object) that the binding type should really be
System.Int32, and simply was trying to correct the error. To avoid this problem,
it is recommended that you expunge the name before using it.

Chapter 6: I-Beam Reference Changes 117

⎕EX 'num'
num←42
bs←2015⌶'num'⍝ (default) binding type System.Object

⎕EX 'num'
num←42
bs←Int32(2015⌶)'num'

Binding A Namespace
In this case, Y specifies the name of a namespace that contains one or more variables.
By default, each variable is bound using its default binding type as described above.
Objects other than variables are ignored.

If it is required to specify the binding type of any of the variables, or if certain vari-
ables are to be excluded, the left argument is a 2-column matrix. The first column con-
tains the names of the variables to be bound, and the second column their binding
types.

Example
The following code snippet binds a namespace containing two variables named
txtSource and sizeSource. In this case, the name of each variable may be spe-
cified as the Path for a WPF property that requires a String or an Int32. For
example, if bindSource were assigned to the DataContext property of a
TextBox, its Text property could be bound to txtSource and its FontSize
property to sizeSource.

src←⎕NS''
src.txtSource←'Hello World'
src.sizeSource←36
options←2 2⍴'txtSource'String'sizeSource'Int32
bindSource←options(2015⌶)'src'

Binding a Vector of Namespaces
In this case, Y specifies the name of a variable that contains a vector of refs to
namespaces. In this case, the result R is of type
Dyalog.Data.DataBoundCollectionHandler which is suitable for bind-
ing to a WPF property that requires an IEnumerable implementation, such as the
ItemsSource property of the DataGrid.

Each namespace in Y represents one of a collection of instances of an object, which
exports a particular set of properties for binding purposes. For example, Y could spe-
cify a wine database where each namespace represents a different wine, and each
namespace contains the same set of variables that contain the name, price (and so
forth) of each wine.

Chapter 6: I-Beam Reference Changes 118

Example
winelist←⎕NS¨(⍴Wines)⍴⊂''
winelist.Name←Wines
winelist.Price←0.01×10000+?(⍴Wines)⍴10000

bindSource←2015⌶'winelist'

Flush Session Caption R←2022⌶Y

UnderWindows, the Session Caption displays information such as the name of the
current workspace. The contents of the Caption can be modified: seeWindow
Captions in the Installation and Configuration Guide for more details.

However, the Caption is updated only at the six-space prompt; calling ⎕LOAD for
example fromwithin a function will not result in the Caption being updated at the
end of the ⎕LOAD.

This I-Beam causes the Session Caption to be updated (flushed) when called. Note
that this I-Beam does not alter the contents of the Caption.

Example
2022⌶0

Chapter 6: I-Beam Reference Changes 119

Close All Windows R←2023⌶Y

UnderWindows the option,Windows -> Close All Windows allows the user to close
all open Editor and TracerWindows, but does not reset the State Indicator.

This I-Beammimics this behaviour, thus allowing the user to write code which can
close all windows before attempting to save the workspace; it is not possible to save
a workspace if any editor or tracer windows are open.

Under UNIX, this is the only mechanism for closing all such windows.

Example
2023⌶0

Chapter 6: I-Beam Reference Changes 120

Set Workspace Save Options R←2400⌶Y

This function sets a flag in the workspace that determines what happens when it is
saved. The flag itself is part of the workspace and is saved with it.

If the flag is set, all Trace, Stop and Monitor settings will be cleared whenever the
workspace is saved, whether by)SAVE, ⎕SAVE or by File/Save from the Session
menubar.

Ymust be 1 (set the flag) or 0 (clear the flag).

The result R is the previous value of the flag.

This function may be extended in the future and a left-argument may be added.

Example
(2400⌶)1

0
)SAVE

0 Trace bits cleared.
3 Stop bits cleared.
0 Monitor bits cleared.
temp saved Sat Apr 05 17:01:30 2014

Chapter 6: I-Beam Reference Changes 121

Expose Root Properties R←2401⌶Y

This function is used to expose or hide Root Properties, Event and Methods.

If Y is 1, Root Properties, Events and Methods are exposed.

If Y is 0, no further Root Properties, Events or Methods are exposed; however any
that have already been exposed will remain so.

This functionality is available in Windows versions by selecting or unselecting the
Expose Root PropertiesMenuItem in the OptionsMenu in the Session. Note that
deselecting this MenuItem only affects future references to Root Properties, Events or
Methods.

This function is the only mechanism available under non-Windows versions of
Dyalog APL; the state of this setting is saved in the workspace, and therefore cannot
be controlled by an environment variable.

Example
#.GetEnvironment'MAXWS'

VALUE ERROR
#.GetEnvironment'MAXWS'

∧

2401⌶1
0

#.GetEnvironment'MAXWS'
64M

2401⌶0
1

#.GetEnvironment'MAXWS'
64M

#.GetCommandLine
VALUE ERROR

#.GetCommandLine
∧

Chapter 6: I-Beam Reference Changes 122

Close All Windows R←2023⌶Y

UnderWindows the option,Windows -> Close All Windows allows the user to close
all open Editor and TracerWindows, but does not reset the State Indicator.

This I-Beammimics this behaviour, thus allowing the user to write code which can
close all windows before attempting to save the workspace; it is not possible to save
a workspace if any editor or tracer windows are open.

Under UNIX, this is the only mechanism for closing all such windows.

Example
2023⌶0

Chapter 6: I-Beam Reference Changes 123

SessionPrint Event 526

Applies To: Session

Description

If enabled, this event is reported when a value is about to be displayed in the Session.
It is generated by the display of a variable or the result of a function including system
variables and functions. Error messages and output from system commands do not
generate this event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'SessionPrint' or

The attachment of a callback function intercepts and annuls the normal display of
any value.

Note that this event may be extended in future; in particular the number of elements
in the event message may be increased, and the event may be generated by some sys-
tem commands. You should therefore allow for such extensions in any code which
refers to SessionPrint.

When the event is generated, the left argument of the callback function contains the
value which was about to be displayed. The callback function may display this or
any other value, using default output or by assignment to ⎕. If so, this output will be
processed normally, without generating a subsequent SessionPrint event. If the call-
back fails to explicitly display anything, nothing will appear in the Session.

Example
⎕VR'⎕SE.TimeStamp'

∇ VAL TimeStamp EV
[1] ⎕TS VAL

∇

'⎕SE'⎕WS'Event' 'SessionPrint' '⎕SE.TimeStamp'

2
2014 9 18 16 20 38 318 2

⎕A
2014 9 18 16 20 44 668 ABCDEFGHIJKLMNOPQRSTUVWXYZ

Chapter 6: I-Beam Reference Changes 124

The result (if any) of the callback function is ignored.

You may not disable the event (by setting its action to ¯1), nor generate the event
using ⎕NQ, nor call it as a method.

Chapter 7: Object Reference Changes 125

Chapter 7:

Object Reference Changes

Error Messages when setting GUI Properties
The message displayed to indicate an error in the right argument to ⎕WC, ⎕WS and
⎕NEW has been improved.

The following statement may be deemed incorrect for two reasons.

'F'⎕WC'Form' ('Posn' 10 10)('TheCaption' 'andys')

l the second property specification ('TheCaption' 'andys') is mal-
formed because there is no such property as 'TheCaption'.

l In the absence of a valid property name/value pair, the system expects a
value for the Size property because Size comes after Posn in the list of Prop-
erties that apply to a Form, and a vector of character vectors is an invalid
value for Size.

Previously, APL assumed the second case and displayed the error message:

RANK ERROR: There was an error processing the "Size" prop
erty

'F'⎕WC'Form'('Posn' 10 10)('TheCaption' 'andys')
∧

This was confusing because the statement contains no mention of the Size property.

The system will now generate the following error:

RANK ERROR: There was an error processing the property at
position 2 of the right argument

'F'⎕WC'Form'('Posn' 10 10)('TheCaption' 'andys')

Chapter 7: Object Reference Changes 126

CursorObj new style
The CursorObj Property has been extended; setting the Property to a value of 14 spe-
cifies the (Pointing)Hand cursor.

Redraw Property
The Redraw Property has been extended; setting the Property to a value of 3 causes
the object and all of its children to be redrawn immediately. As in previous versions
of Dyalog APL, a value of 2 causes the object to be redrawn immediately, but not its
children.

DragDrop Event
The DragDrop Event used to always report the name of the dragged object in the
event message regardless of the syntax used to specify the callback function.

Henceforth, if the callback function is specified using the onDragDrop syntax, the
3rd element of the event message is a ref to the dragged object rather than its name. If
you use the Event property to establish the callback, the 3rd element of the event mes-
sage is the name of the object as before.

This change makes the DragDrop event consistent with other events in the way that
objects are reported in the event message.

Chapter 8: Windows Presentation Foundation 127

Chapter 8:

Windows Presentation Foundation

Introduction
Windows Presentation Foundation is a graphical system that includes a pro-
grammable Graphical User Interface. It is supplied as a set of Microsoft .NET assem-
blies and is supported on all current Windows platforms.

The WPFGUI is in many ways more sophisticated and powerful than either Dyalog
APL's own built-in GUI or the GUI provided by Windows Forms.

Like any other set of .NET classes, WFP can be integrated into Dyalog APL applic-
ations via the .NET interface. Dyalog APL users may therefore develop
GUI applications that are based upon WPF as an alternative to the built-in Dyalog
GUI orWindows Forms.

Quite apart from its advanced GUI capabilities, WPF supports data binding. This is a
complex subject, but putting it very simply, data binding allows a property of a user-
interface object (such as the Text property of a TextBox object) to be bound to
some data. When the data changes, the bound property of the object changes and
vice versa.

Dyalog APL Version 14 includes a data binding function (2015⌶1) which supports
data binding to APL arrays and namespaces.

A WPFGUI can be built dynamically by creating a set of component objects (using
⎕NEW) in a similar way to the Dyalog APL GUI and Windows Forms. However, the
same user-interface can instead be specified statically using XAML, a text markup
system that describes the GUI using XML. Along with data binding, this feature
allows the application logic and the user-interface to be developed and maintained
separately.

The examples described in this section are provided in the workspace
WPFINtro.dws

1This function may remain as an i-beam or be replaced by one or more system functions in a future
Version of Dyalog APL.

Chapter 8: Windows Presentation Foundation 128

Temperature Converter Tutorial
This tutorial illustrates how to go about developing a simple WPF application in
Dyalog APL. It is functionally identical to the GUI tutorial example that illustrates
how to develop a GUI application using the built-in Dyaog APL Grahical user Inter-
face. See Interface Guide: GUI Tutorial.

Like the GUI Tutorial, this is necessarily an elementary example, but illustrates the
principles that are involved. The example is a simple Temperature Converter.

The user may enter a temperature value in either Fahrenheit or Centigrade and have it
converted to the other scale.

No attempt has been made to update the WPF example, in terms of its user-interface,
from the original version which was developed forWindows 3. This allows a direct
comparison to be made between using the WPF and using the built-in Dyalog GUI.

There are two versions provided. The first uses XAML to describe the user-interface
with code to drive it. The second version is written entirely in APL code. The two
versions of this example may be found in WPFINtro.dws in the namespaces
UsingXAML and UsingCode respectively.

Using XAML
The functions and data for this example are provided in the workspace
WPFINtro.dws in the namespace WPF.UsingXAML. To run the example:

)LOAD WPFIntro
WPF.UsingXAML.TempConverter

Arguably the easiest way to create a WPFGUI is to define it using XAML. The
XAML defines the structure, layout and appearance of the user-interface in a very
concise manner. It is still necessary to write code to display the XAML and to
respond to user actions, but the amount of code involved is minimal.

Chapter 8: Windows Presentation Foundation 129

The XAML for the Temperature Converter is shown below.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="WPF Temperature Converter"
SizeToContent="WidthandHeight">
<DockPanel LastChildFill="False">
<Menu DockPanel.Dock="Top">

<MenuItem Header="_Scale">
<MenuItem Name="mnuFahrenheit" Header="_Fahrenheit"
IsCheckable="True" IsChecked="True"/>
<MenuItem Name="mnuCentigrade" Header="_Centigrade"
IsCheckable="True"/>

</MenuItem>
</Menu>
<Grid Width="230" Margin="40,10,10,10">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="60"/>

</Grid.ColumnDefinitions>
<Label Grid.Row="0" Grid.Column="0" Content="Fahrenheit"/>
<Label Grid.Row="1" Grid.Column="0" Content="Centigrade"/>
<TextBox Name="txtFahrenheit" Grid.Row="0" Grid.Column="1"
Margin="5"/>
<TextBox Name="txtCentigrade" Grid.Row="1" Grid.Column="1"
Margin="5"/>
<Button Name="btnF2C" Grid.Row="0" Grid.Column="2"
Content="F>C" Margin="5"/>
<Button Name="btnC2F" Grid.Row="1" Grid.Column="2"
Content="C>F" Margin="5"/>
<Button Name="btnQuit" Grid.Row="2" Grid.Column="1"
Content="Quit" Margin="5"/>
</Grid>
<ScrollBar Name="scrTemp" DockPanel.Dock="Right" Width="20"
Orientation="Vertical" Minimum="1" Maximum="213">
</ScrollBar>

</DockPanel>
</Window>

Chapter 8: Windows Presentation Foundation 130

The window defined by this XAML is illustrated in the screen image shown above.
Let us examine the XAML, component by component.

Parent and Child Controls
First, notice how the structure of the GUI is defined by enclosing the child com-
ponents inside the opening and closing tags of its parent. So:

<Window
...
<DockPanel>

...
</DockPanel>

</Window>

specifies a Window control that contains a DockPanel control.

Similarly,

<Menu>
<MenuItem ... >

<MenuItem ... />
<MenuItem ... />

</MenuItem>
</Menu>

defines a Menu that contains a MenuItem, that itself contains two other MenuItem
objects.

Named and Un-named Controls
Secondly, notice that certain objects are named whereas others are not. For example:
TextBox Name="mnuFahrenheit defines a TextBox namedtxtFahenheit;
whereas <Dockpanel ...> defines an unnamed DockPanel object.

Chapter 8: Windows Presentation Foundation 131

Objects are given names so that they can be referenced from the code that displays
content in the user-interface or handles the user actions. In this case, the code will
read the content of the txtFahrenheit TextBox but has no need to reference the
DockPanel.

The Main Window
<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="WPF Temperature Converter"
SizeToContent="WidthandHeight">
...
</Window>

This extract of XAML defines a Window control; a top-level window that is equi-
valent to a Dyalog APL GUI Form.

The xmlns attributes define the XML namespaces (effectively the vocabulary of the
xml scheme) and are mandatory in an XAML document.

The name of the TextBox is Temp, and its caption isWFP Temperature Converter.
The SizeToContent property is set to "WidthandHeight" , which causes the
TextBox to automatically size itself to fit its content in both horizontal and vertical
directions.

The DockPanel
<DockPanel LastChildFill="False">
..
</DockPanel>

WPF provides a number of layout controls. These are containers whose only purpose
is to arrange child controls in a particular way, and to dictate how they are re-
arranged when the parent window is resized. The DockPanel is one of the simplest
of the WPF layout controls.

In this case, the DockPanel is controlling 3 child windows a Menu, a Grid and a
ScrollBar.

The attachment of a particular child control is specified by setting its
DockPanel.Dock property. By default, the last control added to a DockPanel is
stretched to fill the remaining space when the window is expanded. In this case, the
requirement is for a fixed-width scrollbar attached to the right edge, so the default is
overriden by setting the LastChildFill property to "False".

Chapter 8: Windows Presentation Foundation 132

The Menu
<Menu DockPanel.Dock="Top">

<MenuItem Header="_Scale">
<MenuItem Name="mnuFahrenheit" Header="_Fahrenheit"
IsCheckable="True" IsChecked="True"/>
<MenuItem Name="mnuCentigrade" Header="_Centigrade"
IsCheckable="True"/>

</MenuItem>
</Menu>

The above extract from the XAML defines a Menu. Setting Dock to "Top" causes the
Menu as a whole to be docked, so that it appears like a menubar, along the top of the
DockPanel. The Menu contains a single MenuItem labelled Scale which itself
contains two sub-items labelled Fahrenheit and Centigrade respectively. The
IsCheckable property specifies whether or not the user can check the MenuItem,
and the IsChecked property sets and reports its checked state. The underscore char-
acters (e.g. as in "_Scale") identify the following character as a keyboard shortcut.

The Grid
<Grid Width="230" Margin="40,10,10,10">
...
</Grid>

The Grid object is anotherWPF layout control that organises other controls in rows
and columns. Here, the XAML defines a Grid with a width of 230; a left margin if
40, and a top, right and bottommargin of 10. As there is no explicit unit specified,
the system uses the default device-independent unit (px) of 1/96th inch.

Chapter 8: Windows Presentation Foundation 133

The rows and columns of a Grid are defined by collections of RowDefinition
and ColumnDefinition objects.

Here the XAML specifies that the Grid contains 3 rows, each of which has a
Height set to "Auto" which means that its height depends upon the height of its
content.

<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

Similarly, there are 3 columns. The first column (which will contain labels) takes its
width from its content, i.e. it will be just wide enough to display the longest label.
The other columns for the edit boxes and buttons are specified to be 80px and 60px
wide respectively. In this case, the content (TextBox and Button objects) will
take their widths from that of the column.

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="60"/>

</Grid.ColumnDefinitions>

The Label Objects(Column 1)
<Label Grid.Row="0" Grid.Column="0" Content="Fahrenheit"/>
<Label Grid.Row="1" Grid.Column="0" Content="Centigrade"/>

Here the XAML specifies Label objects Fahrenheit and Centigrade. Because they
are defined within the <Grid> ...</Grid> tags, they are child objects of the
Grid. In addition it is necessary to specify in which cells they are displayed using
their Grid.Row and Grid.Column properties. Note that the cell coordinates have
zero origin.

The TextBox Objects(Column 2)
<TextBox Name="txtFahrenheit" Grid.Row="0" Grid.Column="1"
Margin="5"/>
<TextBox Name="txtCentigrade" Grid.Row="1" Grid.Column="1"
Margin="5"/>

The XAML specifies two TextBox objects named txtFahrenheit and txtCentigrade
respectively. Setting Margin to "5" means that a margin of 5px is applied around
each edge; otherwise the text boxes would occupy the entire width of the column
(80px). The effective width of each TextBox will therefore be 70px (80-2×5).

Chapter 8: Windows Presentation Foundation 134

The Button Objects (Column 3)
<Button Name="btnF2C" Grid.Row="0" Grid.Column="2"
Content="F>C" Margin="5"/>
<Button Name="btnC2F" Grid.Row="1" Grid.Column="2"
Content="C>F" Margin="5"/>
<Button Name="btnQuit" Grid.Row="2" Grid.Column="1"
Content="Quit" Margin="5"/>

The XAML specifies three named Button controls. Note that the caption on a
Button is specified by its Content property.

The ScrollBar Object
This example uses a ScrollBar which the user may scroll to input a value, either
in Fahrenheit or Centigrade depending upon which of the two menu items
(Fahrenheit orCentigrade) is checked.1

<ScrollBar Name="scrTemp" DockPanel.Dock="Right" Width="20"
Orientation="Vertical" Minimum="1" Maximum="213">
</ScrollBar>

This XAML snippet defines a ScrollBar named scrTemp.

Setting DockPanel.Dock to "Right" means that it will be docked (aligned) on the
right edge of the DockPanel. It will be a vertical scrollbar, have a fixed width of
20px and a default height. The range of the ScrollBar is defined by its Minimum
and Maximum properties which are set so that the ScrollBar will specify a value
in Fahrenheit.

Note that in order to cause the ScrollBar to be docked (aligned) along the right
edge of the DockPanel it is necessary to set LastChildFill to "False" (for the
DockPanel) and Dock to "Right" (for the ScrollBar), because the value of
LastChildFill (default "True") overrides the Dock value of the last defined
child of the DockPanel.

Note
The XAML that defines this user-interface is at the same time both simple and com-
plex. It is simple because (in this case) it is readily understood. It is complex because
in order to write it, the user-interface designer must understand precisely how the vari-
ous controls and their properties behave and work together. For these details, you
should refer to the appropriate documentation and check out the large number of
examples published on the internet.

1A ScrollBar is not the ideal choice of control for this type of user interation, but this example
is designed to look and behave like the original Dyalog GUI example, which was written for the
original version of Dyalog APL for Windows.

Chapter 8: Windows Presentation Foundation 135

The Code to display the XAML
The function TempConverter shown below contains the code needed to display
and operate the user interface whose layout is defined by the XAML described
above.

∇ TempConverter;str;xml;win;txtFahrenheit;txtCentigrade;
mnuFahrenheit;mnuCentigrade;btnF2C;
btnC2F;btnQuit;scrTemp;sink

[1] ⎕USING←'System'
[2] ⎕USING,←⊂'System.IO'
[3] ⎕USING,←⊂'System.Windows.Markup'
[4] ⎕USING,←⊂'System.Xml,system.xml.dll'
[5] ⎕USING,←⊂'System.Windows.Controls.Primitives,

WPF/PresentationFramework.dll'
[6]
[7] str←⎕NEW StringReader(⊂XAML)
[8] xml←⎕NEW XmlTextReader str
[9] win←XamlReader.Load xml
[10]
[11] txtFahrenheit←win.FindName⊂'txtFahrenheit'
[12] txtCentigrade←win.FindName⊂'txtCentigrade'
[13] mnuFahrenheit←win.FindName⊂'mnuFahrenheit'
[14] mnuFahrenheit.onClick←'SET_F'
[15] mnuCentigrade←win.FindName⊂'mnuCentigrade'
[16] mnuCentigrade.onClick←'SET_C'
[17] (btnF2C←win.FindName⊂'btnF2C').onClick←'f2c'
[18] (btnC2F←win.FindName⊂'btnC2F').onClick←'c2f'
[19] (btnQuit←win.FindName⊂'btnQuit').onClick←'Quit'
[20] (scrTemp←win.FindName⊂'scrTemp').onScroll←'F2C'
[21] sink←win.ShowDialog

∇

The variable XAML (a character vector) contains the XAML described previously.

Note that apart from the names given to the objects by the XAML and used by the
function, the XAML and the code are independent.

TempConverter[7-8] create an XamlReader object from the character vector
via StringReader and XmlTextReader objects.

[7] str←⎕NEW StringReader(⊂XAML)
[8] xml←⎕NEW XmlTextReader str

TempConverter[9] instantiates the XAML content by calling its Loadmethod,
which returns a reference win to the top-level control (in this case a Window)
defined therein. The Window is not yet visible.

[9] win←XamlReader.Load xml

Chapter 8: Windows Presentation Foundation 136

Earlier, it was explained that objects defined bt the XAMLmust be named in order
that they can be referenced (used) by the code. The mechanism to achieve this is to
call the FindNamemethod of the Window, which returns a reference to the spe-
cified (named) object. So these statements:

[11] txtFahrenheit←win.FindName⊂'txtFahrenheit'
[12] txtCentigrade←win.FindName⊂'txtCentigrade'

obtain refs (in this case named txtFahrenheit and txtCentigrade) to objects
named txtFahrenheit and txtCentigrade. It is convenient (but not essential) to use the
same name for the ref as is used for the control.

Most of the remaining statements obtain refs to the MenuItem, Button and
ScrollBar objects and attach callback functions to their Click and Scroll
events respectively.

[13] mnuFahrenheit←win.FindName⊂'mnuFahrenheit'
[14] mnuFahrenheit.onClick←'SET_F'
[15] mnuCentigrade←win.FindName⊂'mnuCentigrade'
[16] mnuCentigrade.onClick←'SET_C'
[17] (btnF2C←win.FindName⊂'btnF2C').onClick←'f2c'
[18] (btnC2F←win.FindName⊂'btnC2F').onClick←'c2f'
[19] (btnQuit←win.FindName⊂'btnQuit').onClick←'Quit'
[20] (scrTemp←win.FindName⊂'scrTemp').onScroll←'F2C'

Finally the code displays the Window and hands it over to the user by calling the
ShowDialogmethod of the top-level Window.

[21] sink←win.ShowDialog

ShowDialog displays the Window modally; i.e. until it is closed, the user may inter-
act only with that Window. It is equivalent to ⎕DQ win or win.Wait in the
Dyalog built-in GUI.

The CallBack Functions
The callback functions are named as they are in the basic Dyalog GUI example and
are remarkably similar. See Interface Guide: GUI Tutorial.

Callback function f2c which is attached to the Click event of the btnF2C button
(labelled F>C) reads the character string in the txtFahrenheit TextBox, con-
verts it to a number using Text2Num, calculates the equivalent in centigrade and
then displays the result in the txtCentigrade TextBox.

Chapter 8: Windows Presentation Foundation 137

∇ f2c;value
[1] ⍝ Callback to convert Fahrenheit to Centigrade
[2] :If 1=⍴,value←Text2Num txtFahrenheit.Text
[3] txtCentigrade.Text←2⍕(value-32)×5÷9
[4] :Else
[5] txtCentigrade.Text←'invalid'
[6] :EndIf

∇

For completeness, the Text2Num function is shown below. Note that if the user
enters an invalid number, Text2Num returns an an empty vector, and the callback
displays the text invalid instead.

∇ num←Text2Num txt;val
[1] val num←⎕VFI txt
[2] num←val/num

∇

The c2f function converts from Centigrade to Fahrenheit when the user presses the
button labelled C>F.

∇ c2f;value
[1] ⍝ Callback to convert Centigrade to Fahrenheit
[2] :If 1=⍴,value←Text2Num txtCentigrade.Text
[3] txtFahrenheit.Text←2⍕32+value÷5÷9
[4] :Else
[5] txtFahrenheit.Text←'invalid'
[6] :EndIf

∇

The callbacks F2C and C2F, one of which at a time is attached to the Scroll event
of the ScrollBar object are shown below. The argument Msg contains two items,
namely:

[1] Object a ref to the ScrollBar object

[2] Object a ref to an object of type
System.Windows.Controls.Primitives.ScrollEventArgs

In this case the code uses the NewValue property of the ScrollEventArgs object. An
alternative would be to refer to the Value property of the ScrollBar object

∇ F2C Msg;C;F;val
[1] ⍝ Callback for Fahrenheit input via scrollbar
[2] txtFahrenheit.Text←2⍕val←213-(2⊃Msg).NewValue
[3] txtCentigrade.Text←2⍕(val-32)×5÷9

∇

Chapter 8: Windows Presentation Foundation 138

∇ C2F Msg;C;F;val
[1] ⍝ Callback for Centigrade input via scrollbar
[2] txtCentigrade.Text←2⍕val←101-(2⊃Msg).NewValue
[3] txtFahrenheit.Text←2⍕32+val÷5÷9

∇

The callbacks SET_F and SET_C which are attached to the Click events of the
two MenuItem objects are shown below.

∇ SET_F
[1] ⍝ Sets the scrollbar to work in Fahrenheit
[2] scrTemp.(Minimum Maximum)←1 213
[3] scrTemp.onScroll←'F2C'
[4] mnuFahrenheit.IsChecked←1
[5] mnuCentigrade.IsChecked←0

∇

∇ SET_C
[1] ⍝ Sets the scrollbar to work in Centigrade
[2] scrTemp.(Minimum Maximum)←1 101
[3] scrTemp.onScroll←'C2F'
[4] mnuCentigrade.IsChecked←1
[5] mnuFahrenheit.IsChecked←0

∇

Finally, the callback function Quit which is attached to the Click event on the
Quit button, simply calls the Closemethod of the Window:

∇ Quit arg
[1] win.Close

∇

Notice that unlike its equivalent in the Dyalog GUI, it is not appropriate to close the
Window using the expression ⎕EX 'win'. This would expunge the ref to the Win-
dow but have no effect on the Window itself.

Using Code
The functions for this example are provided in the workspace WPFINtro.dws in
the namespace WPF.UsingCode. To run the example:

)LOAD WPFINtro
WPF.UsingCode.TempConverter

The following function TempConverter performs exactly the same task of defin-
ing and manipulating the user-interface for the Temperature Converter example using
XAML which was discussed previously.

The callback functions it uses are identical.

Chapter 8: Windows Presentation Foundation 139

∇ TempConverter;⎕USING;win;dp;mnu;mnuFahrenheit;
mnuCentigrade;gr;tn;rd1;rd2;rd3;
rc1;rc2;rc3;l1;l2;txtFahrenheit;
txtCentigrade;btnF2C;btnC2F;
btnQuit;sink;mnuScale;scrTemp

[1]
[2] ⎕USING←,⊂'System.Windows.Controls,

WPF/PresentationFramework.dll'
[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,

WPF/PresentationFramework.dll'
[4] ⎕USING,←⊂'System.Windows,

WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'System.Windows,

WPF/PresentationCore.dll'
[6]
[7] win←⎕NEW Window
[8] win.SizeToContent←SizeToContent.WidthAndHeight
[9] win.Title←'WPF Temperature Converter'
[10]
[11] dp←⎕NEW DockPanel
[12] dp.LastChildFill←0
[13]
[14] mnu←⎕NEW Menu
[15]
[16] mnuScale←⎕NEW MenuItem
[17] mnuScale.Header←'_Scale'
[18] sink←mnu.Items.Add mnuScale
[19]
[20] mnuFahrenheit←⎕NEW MenuItem
[21] mnuFahrenheit.Header←'Fahrenheit'
[22] mnuFahrenheit.IsCheckable←1
[23] mnuFahrenheit.IsChecked←1
[24] mnuFahrenheit.onClick←'SET_F'
[25] sink←mnuScale.Items.Add mnuFahrenheit
[26]
[27] mnuCentigrade←⎕NEW MenuItem
[28] mnuCentigrade.Header←'_Centigrade'
[29] mnuCentigrade.IsCheckable←1
[30] mnuCentigrade.IsChecked←0
[31] mnuCentigrade.onClick←'SET_C'
[32] sink←mnuScale.Items.Add mnuCentigrade
[33]
[34] sink←dp.Children.Add mnu
[35] dp.SetDock mnu Dock.Top
[36]
[37] gr←⎕NEW Grid
[38] gr.Width←230
[39] gr.Margin←⎕NEW Thickness(40 10 10 10)
[40]
[41] rd1←⎕NEW RowDefinition
[42] rd1.Height←GridLength.Auto

Chapter 8: Windows Presentation Foundation 140

[43] rd2←⎕NEW RowDefinition
[44] rd2.Height←GridLength.Auto
[45] rd3←⎕NEW RowDefinition
[46] rd3.Height←GridLength.Auto
[47] gr.RowDefinitions.Add¨rd1 rd2 rd3
[48]
[49] rc1←⎕NEW ColumnDefinition
[50] rc1.Width←GridLength.Auto
[51] rc2←⎕NEW ColumnDefinition
[52] rc2.Width←⎕NEW GridLength 80
[53] rc3←⎕NEW ColumnDefinition
[54] rc3.Width←⎕NEW GridLength 60
[55] gr.ColumnDefinitions.Add¨rc1 rc2 rc3
[56]
[57] l1←⎕NEW Label
[58] l1.Content←'Fahrenheit'
[59] sink←gr.Children.Add l1
[60] gr.SetRow l1 0
[61] gr.SetColumn l1 0
[62]
[63] l2←⎕NEW Label
[64] l2.Content←'Centigrade'
[65] sink←gr.Children.Add l2
[66] gr.SetRow l2 1
[67] gr.SetColumn l2 0
[68]
[69] txtFahrenheit←⎕NEW TextBox
[70] txtFahrenheit.Margin←⎕NEW Thickness 5
[71] sink←gr.Children.Add txtFahrenheit
[72] gr.SetRow txtFahrenheit 0
[73] gr.SetColumn txtFahrenheit 1
[74]
[75] txtCentigrade←⎕NEW TextBox
[76] txtCentigrade.Margin←⎕NEW Thickness 5
[77] sink←gr.Children.Add txtCentigrade
[78] gr.SetRow txtCentigrade 1
[79] gr.SetColumn txtCentigrade 1
[80]
[81] btnF2C←⎕NEW Button
[82] btnF2C.Content←'F>C'
[83] btnF2C.Margin←⎕NEW Thickness 5
[84] btnF2C.onClick←'f2c'
[85] sink←gr.Children.Add btnF2C
[86] gr.SetRow btnF2C 0
[87] gr.SetColumn btnF2C 2
[88]
[89] btnC2F←⎕NEW Button
[90] btnC2F.Content←'C>F'
[91] btnC2F.Margin←⎕NEW Thickness 5
[92] btnC2F.onClick←'c2f'
[93] sink←gr.Children.Add btnC2F

Chapter 8: Windows Presentation Foundation 141

[94] gr.SetRow btnC2F 1
[95] gr.SetColumn btnC2F 2
[96]
[97] btnQuit←⎕NEW Button
[98] btnQuit.Content←'Quit'
[99] btnQuit.Margin←⎕NEW Thickness 5
[100] btnQuit.onClick←'Quit'
[101] sink←gr.Children.Add btnQuit
[102] gr.SetRow btnQuit 2
[103] gr.SetColumn btnQuit 1
[104]
[105] sink←dp.Children.Add gr
[106]
[107] scrTemp←⎕NEW ScrollBar
[108] scrTemp.Width←20
[109] scrTemp.Orientation←Orientation.Vertical
[110] scrTemp.Minimum←1
[111] scrTemp.Maximum←213
[112] scrTemp.onScroll←'F2C'
[113]
[114] sink←dp.Children.Add scrTemp
[115] dp.SetDock scrTemp Dock.Right
[116]
[117] win.Content←dp
[118]
[119] sink←win.ShowDialog

∇

Chapter 8: Windows Presentation Foundation 142

Although this approach appears at first sight to be considerably more verbose than
using XAML (a 120-line function compared with a 21-line function and a 44-line
block of XAML) each line of code performs only one very simple task, and no
attempt has been made to write utility functions to perform the same task for similar
controls, as might be done in a real application.

As before, let us examine the code line-by-line.

TempConverter[2-5] define ⎕USING so that the appropriate .NET assemplies
are on the search-path. Note that the ScrollBar control is in
System.Windows.Controls.Primitives and not
System.Windows.Controls like the others.

[2] ⎕USING←,⊂'System.Windows.Controls,
WPF/PresentationFramework.dll'

[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,
WPF/PresentationFramework.dll'

[4] ⎕USING,←⊂'System.Windows,
WPF/PresentationFramework.dll'

[5] ⎕USING,←⊂'System.Windows,
WPF/PresentationCore.dll

TempConverter[8-9] creates a Window and sets its SizeToContent and
Title properties as in the XAML example. Notice however that whereas using
XAML the string SizeToContent="WidthandHeight" is sufficient, when
using code it is necessary to get theType right. In this case, the SizeToContent
property must be set to a specific member (in this case WidthAndHeight) of the
System.Windows.SizeToContent enumeration. Other members of this Type
are Width, Height and Manual (the default).

[7] win←⎕NEW Window
[8] win.SizeToContent←SizeToContent.WidthAndHeight
[9] win.Title←'WPF Temperature Converter'

TempConverter[11-12] create a DockPanel control ansd set its
LastChildFill property to 0. In this case the APL value 0 is used instead of the
string "False" in XAML.

[11] dp←⎕NEW DockPanel
[12] dp.LastChildFill←0

TempConverter[14] creates a Menu control.

[14] mnu←⎕NEW Menu

Chapter 8: Windows Presentation Foundation 143

TempConverter[16-18] create a MenuItem control with the caption Scale,
and then add the control to the Items collection of the main Menu using its Add
method. This illustrates one significant difference between using XAML and code. In
XAML, the parent/child relationships between controls are defined by the structure
and order of the XML. Using code, child controls must be explicitly added to the
appropriate list of child controls managed by the parent.

[16] mnuScale←⎕NEW MenuItem
[17] mnuScale.Header←'_Scale'
[18] sink←mnu.Items.Add mnuScale

TempConverter[20-25] create a MenuItem control labelled Fahrenheit.The
IsCheckable and IsChecked properties are set to 1, which is equivalent to
"True" in XAML. The callback function SET_F is assigned to the Click event
exactly as in the XAML version of this example. The last line in this section makes
the Fahrenheit MenuItem a child of the Scale MenuItem.

[20] mnuFahrenheit←⎕NEW MenuItem
[21] mnuFahrenheit.Header←'Fahrenheit'
[22] mnuFahrenheit.IsCheckable←1
[23] mnuFahrenheit.IsChecked←1
[24] mnuFahrenheit.onClick←'SET_F'
[25] sink←mnuScale.Items.Add mnuFahrenheit

The code used to create the Centigrade MenuItem is more or less the same.

TempConverter[34-35] adds the top-level Menu to the DockPanel. Note that
in the case of a DockPanel, the list of its child controls is represented by its
Children property. Furthermore, to define how it is docked this is done, using
code, by the SetDockmethod of the DockPanel. This contrasts with the way
this is achieved using XAML (DockPanel.Dock="Top"). Note too that the argu-
ment to SetDock is not just a simple string as in XAML, but a member of the
System.Windows.Controls.Dock enumeration.

[34] sink←dp.Children.Add mnu
[35] dp.SetDock mnu Dock.Top

TempConverter[37-39] create the Grid control. Its Width property will
accept a simple numeric value, but its Margin property must be given an instance of
a System.Windows.Thickness structure. In this case, the ThickNess con-
structor is given a 4-element numeric vector that specifies its Left, Top, Right
and Bottommembers respectively.

[37] gr←⎕NEW Grid
[38] gr.Width←230
[39] gr.Margin←⎕NEW Thickness(40 10 10 10)

Chapter 8: Windows Presentation Foundation 144

TempConverter[41-47] create instances of 3 RowDefinition classes and
add them to the RowDefinitions collection of the Grid. Note that whereas in
XAML the Height can be specified as a string, using code it is necessary once
again to use the correct Type. In this case, Heightmust be specified by a member of
the System.Windows.GridLength structure.

[41] rd1←⎕NEW RowDefinition
[42] rd1.Height←GridLength.Auto
[43] rd2←⎕NEW RowDefinition
[44] rd2.Height←GridLength.Auto
[45] rd3←⎕NEW RowDefinition
[46] rd3.Height←GridLength.Auto
[47] gr.RowDefinitions.Add¨rd1 rd2 rd3

Similarly, TempConverter[49-55] create instances of 3 ColumnDefinition
classes and add them to the ColumnDefinitions collection of the Grid. Note
that The Width property will not accept a simple numeric value, it must be a mem-
ber of the GridLength structure. To set the Width to 80, it is necessary first to cre-
ate an instance of a GridLength structure giving this value as the argument to its
constructor.

[49] rc1←⎕NEW ColumnDefinition
[50] rc1.Width←GridLength.Auto
[51] rc2←⎕NEW ColumnDefinition
[52] rc2.Width←⎕NEW GridLength 80
[53] rc3←⎕NEW ColumnDefinition
[54] rc3.Width←⎕NEW GridLength 60
[55] gr.ColumnDefinitions.Add¨rc1 rc2 rc3

TempConverter[57-61] create a Label control with the caption Fahrenheit.
To display the Label in a Grid it is necessary to first add it to the Children col-
lection of the Grid, and then set its position in the Grid using its SetRow and
SetColumnmethods. Similar code is used to create and position the second Label.

[57] l1←⎕NEW Label
[58] l1.Content←'Fahrenheit'
[59] sink←gr.Children.Add l1
[60] gr.SetRow l1 0
[61] gr.SetColumn l1 0

Chapter 8: Windows Presentation Foundation 145

TempConverter[69-73] create and position a TextBox control, in the same
way as the Label controls. Notice that in this case, the constructor for the Thickness
structure is given a single value that specifies all four of its Left, Top, Right and
Bottommembers.

[69] txtFahrenheit←⎕NEW TextBox
[70] txtFahrenheit.Margin←⎕NEW Thickness 5
[71] sink←gr.Children.Add txtFahrenheit
[72] gr.SetRow txtFahrenheit 0
[73] gr.SetColumn txtFahrenheit 1

TempConverter[81-87] create and position a Button control. The callback
function f2c is attached to the Click event in the same way as in the XAML ver-
sion of this example.

[81] btnF2C←⎕NEW Button
[82] btnF2C.Content←'F>C'
[83] btnF2C.Margin←⎕NEW Thickness 5
[84] btnF2C.onClick←'f2c'
[85] sink←gr.Children.Add btnF2C
[86] gr.SetRow btnF2C 0
[87] gr.SetColumn btnF2C 2

TempConverter[105] adds the Grid to the list of Children to be managed by
the DockControl.

[105] sink←dp.Children.Add gr

TempConverter[107-112] create a ScrollBar control. Its Width, Minimum
and Maximum properties all accept simple numeric values. However, its
Orientation property must be set to a member of the
System.Windows.Controls.Orientation enumeration.

[107] scrTemp←⎕NEW ScrollBar
[108] scrTemp.Width←20
[109] scrTemp.Orientation←Orientation.Vertical
[110] scrTemp.Minimum←1
[111] scrTemp.Maximum←213
[112] scrTemp.onScroll←'F2C'

TempConverter[114-115] add the ScrollBar to the list of Childrenman-
aged by the DockPanel, and use its SetDockmethod to cause it to be right-
aligned.

[114] sink←dp.Children.Add scrTemp
[115] dp.SetDock scrTemp Dock.Right

Chapter 8: Windows Presentation Foundation 146

Finally, the DockPanel is assigned to the Content property of the Window, and
the Window displayed as in the XAML version of this example. Note that a Window
may contain just one control.

[117] win.Content←dp
[118]
[119] sink←win.ShowDialog

Chapter 8: Windows Presentation Foundation 147

Data Binding
This section provides some simple examples ofWPF data binding using Dyalog
APL. Each example builds upon the one before, so it is advisable to read them in
order.

Example 1
This example illustrates data binding using XAML to specify the user-interface
coupled with an APL function to drive it and handle the data binding.

The XAML
The XAML shown below, describes a Window containing a TextBox.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (Text)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Width="300" Margin="5"
Text="{Binding txtSource,Mode=TwoWay,

UpdateSourceTrigger=PropertyChanged}"/>
</Window>

It contains a data binding expressions, namely:

Text="{Binding txtSource,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}"

This specifies that the Text property of the TextBox is bound to a value in the
Binding Source (which has yet to be defined) whose path is txtSource. The bind-
ing mode is set to TwoWay which means that any change in the TextBox will be
reflected in a new value in the Binding Source, and vice-versa. The value in the Bind-
ing Source will be updated when the property (in this case the Text Property)
changes.

Chapter 8: Windows Presentation Foundation 148

The APL Code
The function Text which generates this example is shown below.

The argument txt is the text to be displayed initially in the TextBox. Note that the
variable XAML_Text contains the XAML that describes the user-interface listed
above.

∇ Text txt;⎕USING;str;xml;win
[1] ⎕USING,←,⊂'System.Windows.Controls,

WPF/PresentationFramework.dll'
[2] win←LoadXAML XAML_Text
[3] win.txtBox←win.FindName⊂'txt'
[4]
[5] ⎕EX'txtSource'
[6] txtSource←txt
[7] win.txtBox.DataContext←2015⌶'txtSource'
[8]
[9] win.Show

∇

The utility function LoadXAML incorporates the 3 lines of code, used to create a
WPFwindow fromXAML, that were coded in-line in previous examples in this
chapter.

∇ win←LoadXAML xaml;⎕USING;str;xml
[1] ⎕USING←'System.IO'
[2] ⎕USING,←⊂'System.Windows.Markup'
[3] ⎕USING,←⊂'System.Xml,system.xml.dll'
[4] ⎕USING,←⊂'System.Windows.Controls,

WPF/PresentationFramework.dll'
[5] str←⎕NEW StringReader(⊂xaml)
[6] xml←⎕NEW XmlTextReader str
[7] win←XamlReader.Load xml

∇

Text[1] defines the .NET search path needed to access the WPF controls.

[1] ⎕USING,←,⊂'System.Windows.Controls,
WPF/PresentationFramework.dll'

Text[2-3] uses the utility function LoadXAML to load a WPF user-interface from
the XAML and then uses the FindNamemethod to obtain a reference to the object
named txt.

[2] win←LoadXAML XAML
[3] win.txtBox←win.FindName⊂'txt'

Chapter 8: Windows Presentation Foundation 149

Text[5-6] initialise a new global variable named txtSource to the value of the
argument. When using a global variable as a data binding source, it is generally
advisable to establish a new variable by first expunging it.1

[5] ⎕EX'txtSource'
[6] txtSource←txt

Text[7]creates a Binding Source object using 2015⌶ and assigns it to the
DataContext property of the TextBox object. Because it is a character vector, the
exported Type for the bound variable txtSource is System.String which is
appropriate for the Text property of a TextBox.

[7] win.txtBox.DataContext←2015⌶'txtSource'

Text[9] displays the Window. Note that although the APL local variable win
goes out of scope when the function terminates, the Window remains visible until
the user has closed it.

[9] win.Show

Testing the Data Binding
The following expressions may be used to explore the effect of data binding.

)LOAD WPFIntro
)CS DataBinding.Text

Text 'Hello World'

txtSource←⌽txtSource

1This is because its binding type (the exported type of the data bound variable) is stored in the
workspace along with its value, and the binding type (were it to be incorrect) may not be changed
once it has been established.

Chapter 8: Windows Presentation Foundation 150

Typing into the TextBox changes the value of the bound variable.

txtSource
What is in txtSource now?

Example 2
This example illustrates the use of the optional left argument to 2015⌶ to specify the
data type used to export the value of the bound variable.

The XAML
The XAML shown below, describes the same Window containing a TextBox as
before.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (FontSize)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Text="Hello World" Width="300"
Margin="5"
FontSize="{Binding sizeSource,Mode=OneWay}"/>

</Window>

This time, the data binding expression is:

FontSize="{Binding sizeSource,Mode=OneWay}"/>

This specifies that the FontSize property of the TextBox is bound to a value in
the Binding Source (which has yet to be defined) whose path is sizeSource. The
binding mode is set to OneWay which means that the FontSize property depends
on the data value but not vice versa. Were the FontSize to change for any external
reason (which is admittedly unlikely in the case of FontSize), it would not alter
the value in sizeSource to which it is bound.

Chapter 8: Windows Presentation Foundation 151

The APL Code
The function FontSize is almost identical to the function Text which is described
in Example 1.

∇ FontSize size;⎕USING;win
[1] ⎕USING←'System'
[2] ⎕USING,←⊂'System.Windows.Controls,

WPF/PresentationFramework.dll'
[3] win←LoadXAML XAML
[4] win.txtBox←win.FindName⊂'txt'
[5]
[6] ⎕EX'sizeSource'
[7] sizeSource←size
[8] win.txtBox.DataContext←Int32(2015⌶)'sizeSource'
[9]
[10] win.Show

∇

The key difference is in FontSize[8]. Here the left argument of (2015⌶) is
Int32. This means that the exported Type of the variable sizeSource will be
Int32. This Type (a 32-bit integer) is required by the FontSize property of a
TextBox; no other Type will do. If this were omitted, APL would export the value
of the variable using a Type dependent on its internal format (most likely Int16)
and the binding would fail.

[8] win.txtBox.DataContext←Int32(2015⌶)'sizeSource'

Testing the Data Binding
)LOAD WPFIntro
)CS DataBinding.FontSize

FontSize 12

sizeSource
12

sizeSource←30

Chapter 8: Windows Presentation Foundation 152

Example 3
This example, uses APL code to both build the user-interface (instead of using
XAML) and handle the data binding. In this case both the Text and the FontSize
properties are bound to APL variables. The function is shown below:

∇ TextFontSize(txt size);⎕USING;win;sink
[1] ⎕USING←'System'
[2] ⎕USING,←,⊂'System.Windows.Controls,

WPF/PresentationFramework.dll'
[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,

WPF/PresentationFramework.dll'
[4] ⎕USING,←⊂'System.Windows,

WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'System.Windows,

WPF/PresentationCore.dll'
[6]
[7] ⍝ Create a Window, DockPanel and TextBox
[8] win←⎕NEW Window
[9] win.SizeToContent←SizeToContent.WidthAndHeight
[10] win.Title←'Data Binding (Text and FontSize)'
[11] win.txtBox←⎕NEW TextBox
[12] win.txtBox.Width←350
[13] win.Content←win.txtBox
[14]
[15] ⍝ Define data binding from variable "txtSource"
[16] ⍝ to the Text property of TextBox win.txtBox
[17] ⎕EX'txtSource'
[18] txtSource←txt
[19] win.txtbinding←⎕NEW Data.Binding(⊂'txtSource')
[20] win.txtbinding.Source←2015⌶'txtSource'
[21] win.txtbinding.Mode←Data.BindingMode.TwoWay
[22] win.txtbinding.UpdateSourceTrigger←

Data.UpdateSourceTrigger.PropertyChanged
[23] sink←win.txtBox.SetBinding

TextBox.TextProperty win.txtbinding
[24]
[25] ⍝ Define data binding from variable "sizeSource"
[26] ⍝ to the FontSize property of TextBox win.txtBox
[27] ⎕EX'sizeSource'
[28] sizeSource←size
[29] win.fntbinding←⎕NEW Data.Binding(⊂'sizeSource')
[30] win.fntbinding.Source←Int32(2015⌶)'sizeSource'
[31] win.fntbinding.Mode←Data.BindingMode.OneWay
[32] sink←win.txtBox.SetBinding

TextBox.FontSizeProperty win.fntbinding
[33]
[34] win.Show

∇

Chapter 8: Windows Presentation Foundation 153

Apart from the code that creates the controls, the only material difference between
this and the previous examples is the way that the bindings are handled.

In code (as opposed to using XAML) this is done using explicit Binding objects1
The code for binding the Text property to the txtSource variable is as follows:

[19] win.txtbinding←⎕NEW Data.Binding(⊂'txtSource')
[20] win.txtbinding.Source←2015⌶'txtSource'
[21] win.txtbinding.Mode←Data.BindingMode.TwoWay
[22] win.txtbinding.UpdateSourceTrigger←

Data.UpdateSourceTrigger.PropertyChanged
[23] sink←win.txtBox.SetBinding

TextBox.TextProperty win.txtbinding

Line [19] creates a Binding object, passing the constructor the the name of the APL
variable txtSource as the Path to the binding value.

[19] win.txtbinding←⎕NEW Data.Binding(⊂'txtSource')

Line [20] creates a Binding Source object using 2015⌶ as before, but this time
assigns it to the Source property of the Binding object.

[20] win.txtbinding.Source←2015⌶'txtSource'

Line [21] sets the Mode property of the Binding object to TwoWay (a field of the
BindingMode Type). As in Example 1, this specifies two-way binding.

[21] win.txtbinding.Mode←Data.BindingMode.TwoWay

Line [22] sets the UpdateSourceTrigger property of the Binding object to
PropertyChanged (a field of the UpdateSourceTrigger Type). This causes
the value in the Binding Source (in this case txtSource) to be changed whenever
the property (in this case the Text property) of the TextBox changes. This will
occur on every keystroke.

[22] win.txtbinding.UpdateSourceTrigger←
Data.UpdateSourceTrigger.PropertyChanged

(Note that the three types Binding, BindingMode and
UpdateSourceTrigger are located in System.Windows.Data)

The code that establishes the binding between the sizeSource variable and the
FontSize property is very similar.

1Binding objects are implicit in all binding operations, but are created declaratively when using
XAML.

Chapter 8: Windows Presentation Foundation 154

[29] win.fntbinding←⎕NEW Data.Binding(⊂'sizeSource')
[30] win.fntbinding.Source←Int32(2015⌶)'sizeSource'
[31] win.fntbinding.Mode←Data.BindingMode.OneWay
[32] sink←win.txtBox.SetBinding

TextBox.FontSizeProperty win.fntbinding

Note however that (as in Example 2) the left-argument to (2015⌶) specifies that the
exported data type of the sizeSource variable is to be Int32.

Testing the Data Binding
)LOAD WPFIntro
)CS DataBinding.TextFontSizeCode

TextFontSize 'Hello World' 30

txtSource sizeSource←(⌽txtSource) 18

As in previous examples, when the user changes the text, the new text appears in
txtSource.

txtSource
Learn to play the bouzouki!

Note
It is perhaps worth mentioning that if you want to bind two properties of the same
object to two APL variables, it has to be done by writing code as shown in this
example, using two separate Binding Source objects. This is because using XAML
you may only associate a single Binding Source to an object.

However, this minor restriction is easily surmounted by using an APL namespace as a
Binding Source as illustrated in the next Example.

Chapter 8: Windows Presentation Foundation 155

Example 4
This example uses XAML to specify the user-interface and the main components of
the data binding.

The XAML
The XAML is much the same as in Example 1 and 2 except that it connects two prop-
erties Text and FontSize of the same TextBox to two Paths txtSource and
sizeSource.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (Text and FontSize)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Width="350" Margin="5"
Text="{Binding txtSource,Mode=TwoWay,

UpdateSourceTrigger=PropertyChanged}"
FontSize="{Binding sizeSource,Mode=OneWay}"/>

</Window>

Chapter 8: Windows Presentation Foundation 156

The APL Code
The function TextFontSize is shown below.

∇ TextFontSize(txt size);⎕USING;win;options
[1] ⎕USING←'System'
[2] ⎕USING,←⊂'System.Windows,

WPF/PresentationFramework.dll'
[3]
[4] win←LoadXAML XAML
[5]
[6] src←⎕NS''
[7] src.(txtSource sizeSource)←txt size
[8] options←2 2⍴'txtSource'String'sizeSource'Int32
[9]
[10] win.DataContext←options(2015⌶)'src'
[11]
[12] win.Show

∇

Lines [6-7] create a new namespace src containg two variables txtSource and
sizeSource which are initialised to the arguments of the function.

[6] src←⎕NS''
[7] src.(txtSource sizeSource)←txt size

Line [8] creates a local variable named options which will be used as the left argu-
ment of 2015⌶). It is a 2-column matrix. The first column is a list of the names of the
variables which are to be exported by the namespace when used as a Binding Source.
The second column specifies their data types.

[8] options←2 2⍴'txtSource'String'sizeSource'Int32

Line [10] creates a Binding Source object from the namespace src and a left argu-
ment options and assigns it to the DataContext property of the Window win.

[10] win.DataContext←options(2015⌶)'src'

An alternative would be to assign it to the DataContext property of the TextBox
object, but this would require one further line of code to identify it. The reason this
works is that the DataContext property of a TextBox (and many other controls) is
inherited from its parent Window. This feature allows a single Binding Source
namespace to be used to specify data bindings between its component variables and
any number of properties of any number of controls in the same Window.

Chapter 8: Windows Presentation Foundation 157

As shown before, the left argument of 2015⌶) is optional. Without it, the
namespace would export all its variables using default binding types. In this case,
because the binding type of sizeSourcemust be specifed as Int32, it is neces-
sary to use a left argument, which means specifying all the variables involved.

Testing the Data Binding
)LOAD WPFIntro
)CS DataBinding.TextFontSizeXAML

DB_Text_FontSize_XAML'Hello World' 30

src.(txtSource sizeSource←(⌽txtSource) 18)

As in previous examples, when the user changes the text, the new text appears in
txtSource.

src.txtSource
Learn to play the bouzouki!

Example 5
WPF data binding provides the means to bind controls that display lists of items,
such as the ListBox, ListView, and TreeView controls, to collections of data.
These controls are all based upon the ItemsControl class. To bind an
ItemsControl to a collection object, you use its ItemsSource property.

If the right argument of 2015⌶ names a variable, or a namespace containing a vari-
able, that is a vector other than a simple character vector, it returns a Binding Source
object that provides the necessary interfaces to bind the variable as a collection to the
ItemSource property of an ItemsControl.

Chapter 8: Windows Presentation Foundation 158

The APL variable will normally contain a vector of character vectors, because most
ItemsControl objects deal with collections of strings. However, any APL vector
other than a simple character vector will be treated in this way.

This example illustrates binding between a variable containing a vector of character
vectors, to the items of a ListBox.

Incidentally, the ItemsSource property overrides the Items collection as a
means to specify the content of the ItemsControl. When the ItemsSource
property is set, the Items collection becomes read-only and of fixed-size. Note that
the ItemsSource property supports OneWay binding by default.

The XAML
The variable XAML_FilteredList, shown below, contains XAML to specify a
Window containing a StackPanel. The StackPanel control is a WPF layout
control that organises child controls in a single line, by default vertically. In this
example, the StackPanel contains a TextBox and, below it, a WrapPanel, and
below that a TextBlock. The WrapPanel is also a layout control that organises
its child controls sequentially from left to right. The WrapPanel contains two
ListBox controls.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentat

ion"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Filtered List Example"
SizeToContent="WidthAndHeight"
Topmost="true">
<StackPanel>

<TextBox Name="filter" Margin="5"
Text="{Binding Filter,Mode=TwoWay,

UpdateSourceTrigger=PropertyChanged}"/>
<WrapPanel>

<ListBox Name="all" Width="135" Height="440"
Margin="5" ItemsSource="{Binding DyalogNames}"/>
<ListBox Name="filtered" Width="135" Height="440"
Margin="5" ItemsSource="{Binding FilteredList}"/>

</WrapPanel>
<TextBlock Text="Dyalog WPF Demo" Margin="5"/>

</StackPanel>
</Window>

Chapter 8: Windows Presentation Foundation 159

The Code
∇ FilteredList;MySource;win;sink

[1]
[2] MySource←⎕NS''
[3] MySource.Filter←''
[4] MySource.FilteredList←0⍴⊂''
[5] MySource.DyalogNames←DyalogNames
[6]
[7] win←LoadXAML XAML_FilteredList
[8] win.DataContext←2015⌶'MySource'
[9] (win.FindName⊂'filter').onTextChanged←

'FilteredList_TextChanged'
[10] sink←win.ShowDialog

∇

Like the previous example, this example uses a namespace MySource containing
the bound variables Filter, FilteredList and DyalogNames.

FilteredList[8] creates a Binding Source object and assigns it to the
DataContext property of the Window win.

[8] win.DataContext←2015⌶'MySource'

The DataContext property is inherited by all child controls , so they all share the
same Binding Source. Their different Paths to different values in the Binding
Source are specified in the XAML as follows.

The Text property of the TextBox named filter is bound to the variable Filter
by the expression Text="{Binding Filter,...

<TextBox Name="filter" Margin="5"
Text="{Binding Filter,Mode=TwoWay,

The ItemsSource property of the ListBox named all is bound to the variable
DyalogNames by the expression ItemsSource="{Binding DyalogNames}
"

<ListBox Name="all" Width="135" Height="440"
Margin="5" ItemsSource="{Binding DyalogNames}"/>

Thirdly, the ItemsSource property of the ListBox named filtered is bound to
the variable FilteredList by the expression ItemsSource="{Binding
FilteredList}"

<ListBox Name="filtered" Width="135" Height="440"
Margin="5" ItemsSource="{Binding FilteredList}"/>

Chapter 8: Windows Presentation Foundation 160

Testing the Data Binding
FilteredList

If the user types a single character, in this case "e", into the TextBox, this fires a
TextChanged event which in turn fires the callback function shown below:

∇ FilteredList_TextChanged a;hits
[1] hits←(⊂MySource.Filter){∨/⍺⍷⍵}¨DyalogNames
[2] MySource.FilteredList←hits/DyalogNames

∇

Chapter 8: Windows Presentation Foundation 161

When the callback runs, the variable MySource.Filter, which is bound to the
Text property of the TextBox, will contain "e". The function calculates a mask
hits which identifies which members of the variable DyalogNames contain this
string. It then assigns that subset to the variable MySource.FilteredList. This
is bound to the ItemsSource property of the right-hand ListBox, so the result is
as follows:

Chapter 8: Windows Presentation Foundation 162

Similarly, typing "er" into the TexBox reduces the number of hits as shown below:

Chapter 8: Windows Presentation Foundation 163

Example 6
This example illustrates data binding using a vector of .NET objects, in this case
DateTime objects.

The XAML
The XAML shown below, describes a Window containing a StackPanel, inside
which is a ListBox.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentat
ion"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="NetObjects (DateTime) Example"
SizeToContent="WidthAndHeight" >
<StackPanel>

<TextBlock Text="Dates of forthcoming Orthodox Easters"
FontSize="18" Margin="5"/>
<ListBox Name="EasterDates" Height="100"
Margin="5" />

</StackPanel>
</Window>

The APL Code
The function NetObjects is shown below.

∇ NetObjects;⎕USING;win;dt
[1] ⎕USING←'System'
[2] win←LoadXAML XAML
[3] win.dates←win.FindName⊂'EasterDates'
[4] dt←{⎕NEW DateTime ⍵}¨Easter
[5] win.dates.ItemsSource←2015⌶'dt'
[6] sink←win.ShowDialog

∇

Chapter 8: Windows Presentation Foundation 164

NetObjects[3] uses FindName to obtain a ref to the ListBox (defined in the
XAML) named EasterDates:

[3] win.dates←win.FindName⊂'EasterDates'

The global variable Easter contains a vector of 3-element numeric vectors rep-
resenting the dates of forthcoming Orthodox Easter Sundays.

↑Easter
2015 4 12
2016 5 1
2017 4 16
2018 4 8
2019 4 28
2020 4 19
2021 5 2
2022 4 24
2023 4 16
2024 5 5

NetObjects[4] creates a vector of DateTime objects from the global variable
Easter.

[4] dt←{⎕NEW DateTime ⍵}¨Easter

Then, NetObjects[5] creates a binding source object from this array and assigns it to
the ItemsSource property of the ListBox.

[5] win.dates.ItemsSource←2015⌶'dt'

Testing the Data Binding
)LOAD WPFIntro
DataBinding.NETObjects.NETObjects

Chapter 8: Windows Presentation Foundation 165

Example 7
This example illustrates data binding using a vector of namespaces.

Each row in the WPF DataGrid control is represented by an object, and each
column as a property of that object. Each row in the DataGrid is bound to an
object in the data source, and each column in the data grid is bound to a property of
the data object.

Chapter 8: Windows Presentation Foundation 166

The XAML
The XAML shown below, describes a Window containing a DockPanel, inside
which is a DataGrid.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentat

ion"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DataGrid Example" Height="500"
SizeToContent="Width"
Topmost="true">
<DockPanel>

<DataGrid Name="DG1" ItemsSource="{Binding}"
AutoGenerateColumns="False" >

<DataGrid.Columns>
<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />

</DataGrid.Columns>
</DataGrid>

</DockPanel>
</Window>

The phrase ItemsSource="{Binding}" states that the content of the
DataGrid is bound to a data source, which in this case will be inherited from the
DataContext property of the parent Window.

Binding="{Binding Name}" specifies that the contents of the first column are
bound to a Path named Name in the data source.

Similarly, Binding="{Binding Price, StringFormat=C}" specifies that
the Path for the second column is Price (StringFormat=Cmerely specifies the
default currency format).

The APL Code
The function Grid is shown below.

∇ Grid;⎕USING;MySource;win
[1] ⎕USING←'System'
[2] winelist←⎕NS¨(⍴Wines)⍴⊂''
[3] winelist.Name←Wines
[4] winelist.Price←0.01×10000+?(⍴Wines)⍴10000
[5]
[6] win←LoadXAML XAML
[7] win.DataContext←2015⌶'winelist'
[8] win.Show

∇

Chapter 8: Windows Presentation Foundation 167

The global variable Wines contains a vector of character vectors, each of which is
the name of a wine. Grid[2-4] creates winelist, a vector of namespaces, of the
same length, each of which contains two variables c Name and Price.

Testing the Data Binding
)LOAD WPFIntro
)CS DataBinding.DataGrid
Grid

Chapter 8: Windows Presentation Foundation 168

Let's round the prices to the nearest $5.

winelist.Price←5×⌊0.5+winelist.Price÷5

Chapter 8: Windows Presentation Foundation 169

Syncfusion Libraries
Under a licensing agreement with Syncfusion, Dyalog includes the Syncfusion lib-
rary ofWPF controls. These may be used by Dyalog APL users to develop applic-
ations, and may be distributed with Dyalog APL run-time applications.

The Syncfusion libraries comprise a set of .NET assemblies which are supplied in the
Syncfusion/4.5 sub-directory of the main Dyalog APL installation directory (for
example: c:\Program Files\Dyalog\Dyalog APL-64 14.0 Unicode\Syncfusion\4.5.

Requirements
To use the Syncfusion libraries you must be using Microsoft .NET Version 4.5. See
User's Guide: Configuration Dialog:.NET Framework Tab.

In addition, to use the controls contained in these assemblies it is necessary to per-
form one or both of the following steps.

Using XAML
If using XAML, the XAML must include the appropriate xmlns statements that spe-
cify where the Syncfusion controls are to be found. For example:

xmlns:syncfusion="clr-namespace:Syncfusion.Windows.Gauge;
assembly=Syncfusion.Gauge.WPF"

The above statement defines the prefix syncfusion to mean the specified Syn-
cfusion namespace and assembly that contains the various Gauge controls. When the
prefix syncfusion is subsequently used in front of a control in the XAML, the sys-
tem knows where to find it. For example:

<syncfusion:CircularGauge Name="fahrenheit" Margin="10">

⎕USING
In common with all .NET types, when a Syncfusion control is loaded using XAML
or using ⎕NEW it is essential that the current value of ⎕USINGidentifies the .NET
namespace and assembly in which the control will be found. For example:

⎕USING,←⊂'Syncfusion.Windows.Gauge,
Syncfusion/4.5/Syncfusion.Gauge.WPF.dll'

This statement tells APL to search the .NET namespace named
Syncfusion.Windows.Gauge, which is located in the assembly file whose path (rel-
ative to the Dyalog installation directory) is
Syncfusion/4.5/Syncfusion.Gauge.WPF.dll.

Chapter 8: Windows Presentation Foundation 170

Syncfusion Circular Gauge Example

Chapter 8: Windows Presentation Foundation 171

The XAML
Like most Syncfusion controls, the CircularGauge is made up of a complex struc-
ture of objects, and the XAML (see variable XAML_SF) is too extensive to describe
in detail herein. It was created from the sample XAML from the Syncfusion doc-
umentation for this control entitled Essential Gauge for WPF, which may be down-
loaded from http://help.syncfusion.com/wpf/gauge.

The key statements in the XAML are as follows:

xmlns:syncfusion="clr-namespace:Syncfusion.Windows.Gauge;
assembly=Syncfusion.Gauge.WPF"

The above statement defines the prefix syncfusion to mean the specified Syn-
cfusion namespace and assembly. When the prefix syncfusion is subsequently
used in front of a control in the XAML, the system knows where to find it.

The next two statements define CircularPointer controls (the needles on the
gauges); one for the Fahrenheit gauge (named f_pointer) and one for the Centigrade
gauge (named c_pointer).

<syncfusion:CircularPointer Name="f_pointer" BorderWidth="0.3"
PointerLength="100" PointerPlacement="Inside" PointerWidth="20"
Value="32"/>

<syncfusion:CircularPointer Name="c_pointer" BorderWidth="0.3"
PointerLength="100" PointerPlacement="Inside" PointerWidth="20"
Value="0"/

The APL Code
The following functions were used to produce the example illustrated above. The
main function is SF_TC_XAML.

∇ SF_TC_XAML;⎕USING;win;f_pointer;c_pointer;sink
[1]
[2] win←LoadXAML XAML_SF
[3]
[4] f_pointer←win.FindName⊂'f_pointer'
[5] c_pointer←win.FindName⊂'c_pointer'
[6]
[7] f_pointer.onMouseEnter←'MouseEnter'
[8] c_pointer.onMouseEnter←'MouseEnter'
[9]
[10] sink←win.ShowDialog

∇

After creating the Window from the text in XAML_SF, the function SF_TC_XAML
obtains refs to the two CircularPointer controls named f_pointer (in the Fahren-
heit gauge) and c_pointer (in the Centrigrade gauge). It then attaches the
MouseEnter callback to each of these objects.

http://help.syncfusion.com/wpf/gauge

Chapter 8: Windows Presentation Foundation 172

∇ MouseEnter(this ev);ptrs
[1] ptrs←f_pointer c_pointer
[2] ptrs.onValueChanged←(ptrs⍳this)⌽0 'TempChanged'

∇

In this example, the user grabs one of the gauge needles and moves it around the face
of the gauge. When the user moves the mouse into one of these needles, the
MouseEnter callback fires. The function MouseEnter receives the
CircularPointer object that generated the event this as the first item in its
argument.

The code simply attaches the callback function TempChanged to this, and dis-
ables any callback on the other CircularPointer object.

Note that if both CircularPointer objects had callbacks on TempChanged at
the same time, the system would enter a callback loop.

∇ TempChanged(obj ev)
[1] :Select obj
[2] :Case f_pointer
[3] c_pointer.Value←(obj.Value-32)×5÷9
[4] :Case c_pointer
[5] f_pointer.Value←32+obj.Value÷5÷9
[6] :EndSelect

∇

The LoadXAML function used in this example is subtly different from previous
examples.

∇ win←LoadXAML xaml;⎕USING;str;xml
[1] ⎕USING←'System.IO'
[2] ⎕USING,←⊂'System.Windows.Markup'
[3] ⎕USING,←⊂'System.Xml,system.xml.dll'
[4] ⎕USING,←⊂'System.Windows.Controls,

WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'Syncfusion.Windows.Gauge,

Syncfusion/4.5/Syncfusion.Gauge.WPF.dll'
[6] str←⎕NEW StringReader(⊂xaml)
[7] xml←⎕NEW XmlTextReader str
[8] win←XamlReader.Load xml

∇

Chapter 8: Windows Presentation Foundation 173

In particular, it contains the all-important statement:

[5] ⎕USING,←⊂'Syncfusion.Windows.Gauge,
Syncfusion/4.5/Syncfusion.Gauge.WPF.dll'

This statement tells APL to search the .NET namespace named
Syncfusion.Windows.Gauge, which is located in the assembly file whose path (rel-
ative to the Dyalog installation directory) is
Syncfusion/4.5/Syncfusion.Gauge.WPF.dll.

Chapter 8: Windows Presentation Foundation 174

Chapter 9: UNIX Specific Features 175

Chapter 9:

UNIX Specific Features

Summary
This section summarises the UNIX specific changes in Dyalog APL Version 14.0.

l Previous versions of Dyalog APL for UNIX included the Dyalog APL for
UNIX Installation and User Guide; in version 14.0 this has been split into
the Dyalog APL for UNIX Installation and Configuration Guide and the
Dyalog APL for UNIX User Guide

l The environment variable SKIPBLANKLINES is used to control whether
blank lines and comment-only lines are skipped when tracing. If
SKIPBLANKLINES=0 then the behaviour in previous versions is retained

l The keystroke CMD-a forces comment alignment
l All shared libraries are now located in $DYALOG/lib
l In preparation for RIDE, ride*.so and lbar.xml are included in the release,

and the mapl script has support for enabling RIDE
l To cater for various terminal windows, translate tables xterm-256, screen

and screen-256 have been added
l 685⌶ has been removed; should APL terminate, both an aplcore and a core

file will be generated, removing the need for this functionality
l The function geterrno has been added to dyalog.so; be aware that the error

number returned may have been generated subsequently to the original error
condition

l The buildse workspace is now included with UNIX releases; this allows the
user to recreate their default session file

l The Key character cannot be entered directly at present (May 2014). See the
Dyalog APL for UNIX Installation and User Guide for more information.

l From 14.0.22176 onwards, it is possible to close all Editor and Tracer win-
dows using 2023⌶. This mimics the Close all Windows menuitem in ver-
sions of Dyalog for Windows.

Chapter 9: UNIX Specific Features 176

Index 177

Index

]

]chart user command, 53

A

access codes 82
AddClassHeaders parameter 38
aplserve 13
atop 72
auto_pw parameter 36

B

boxing user command 35
Bug Fixes 16

C

cells 55
Change to Editor and fixing scripted
objects 39
checksum 76, 78
ClassicModeSavePosition parameter 37
close all windows 119, 122
component files

checksum 76, 78
compression 79
file properties 76
journaling 77
unicode 76

compress/decompress vector of short
integers 106
compression 76, 79
creating component files 80
currying 25
CursorObj Hand 126

D

data binding 112, 127, 147
dfns 13
DragDrop 126
dwsin 13
dwsout 13
dyadic primitive functions

index of 21, 57
dyadic primitive operators

currying 25
key 65
rank 69

E

Editor, Tracer and fixing in scripted objects 39
Events

DragDrop 126
SessionPrint 123

expose root properties 121

F

file
check and repair 83
create 80
read component 82

file properties 76
files

APL component files 80
flush session caption 118
fork 72
function train 72

I

i-beam
close all windows 119, 122
compress/decompress vector of short

integers 106
expose root properties 121
flush session caption 118
inverted table index of 103
number of threads 109

Index 178

serialise/deserialise arrays 108
set workspace save options 120
specify workspace available 111
unsqueezed type 105
update function time stamp 110

index-of function 21, 57
index of 103
INotifyCollectionChanged interface 4
Interoperability 6
inverted table index of 103

J

journaling 76-77

K

Key Features 1
key operator 20, 28, 65

M

major cell 21, 58
major cells 55, 69
markup 97
migration levels 60
Miscellaneous Enhancements 35
mix function 22-23, 60

with axis 60
monadic primitive functions

mix 22-23, 60
roll 100
tally 57

monadic primitive operators 24

N

number of threads 109

P

parallel execution
number of threads 109

passnumbers of files 82
Performance Improvements 14

primitive operators
key 65
rank 69

print width in session 36
properties

UpperCase 13
Properties

error messages 125

R

rank operator 28, 69
reading components from files 82
Redraw extended 126
roll random function 100
rows user command 36

S

serialise/deserialise arrays 108
SessionPrint 123
set workspace save options 120
SkipBlankLines parameter) 38
specify workspace available 111
subarrays 55
Syncfusion 4
System Requirements 5

T

tally 57
tcpip 13
tolarge User Command 11
train 72

U

unicode 76
unknown-entity 100
unknownentity 100
unsqueezed type 105
update function time stamp 110
UpperCase Property 13
User Commands

to64 11
using XAML 128

Index 179

V

variant operator 28
Variant operator 44

W

whitespace 94
Window Captions 42
Windows Presentation Foundation 127
WPF tutorial 128
WrapSearch parameter 37

X

XAML 128
xml convert 86

markup 97
unknown-entity 100
unknownentity 100
whitespace 94

180 Dyalog APL/W Release Notes Version 14.0

	Chapter 1: Introduction
	Key Features
	System Requirements
	Interoperability
	Announcements
	Performance Improvements
	Bug Fixes

	Chapter 2: New Language Features
	Function Trains
	Key Operator
	Index Of
	Mix
	Mix With Axis
	Rationalisation of Monadic Operators
	Right Operand Currying
	Random Link Extension
	New Symbols in Classic Edition

	Chapter 3: Component File Improvements
	File Read
	Compressed Components
	File Create and Variant
	File Check and Variant

	Chapter 4: Miscellaneous
	IDE Enhancements
	Window Captions
	Specifying Overloads and Casts for .Net
	APL Application as a Service
	Causeway Tools

	Chapter 5: Language Reference Changes
	Tally
	Index Of
	Mix
	Key
	Rank
	Function Trains
	File Properties
	File Create
	File Read Components
	File Check and Repair
	XML Convert
	Roll

	Chapter 6: I-Beam Reference Changes
	Inverted Table Index Of
	Unsqueezed Type
	Compress Vector of Short Integers
	Serialise/Deserialise Array
	Number of Threads
	Update Function Time Stamp
	Specify Workspace Available
	Data Binding
	Flush Session Caption
	Close All Windows
	Set Workspace Save Options
	Expose Root Properties
	Close All Windows
	SessionPrint

	Chapter 7: Object Reference Changes
	Chapter 8: Windows Presentation Foundation
	Temperature Converter Tutorial
	Data Binding
	Syncfusion Libraries

	Chapter 9: UNIX Specific Features
	Summary

	Index

